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ABSTRACT 

 

 

This dissertation contributes to develop the mathematical fundamentals and 

computational strategies of risk-based security-constrained optimal power flow (RB-

SCOPF) and validate its application in electricity markets. The RB-SCOPF enforces three 

types of flow-related constraints: normal state deterministic flow limits, contingency state 

deterministic flow limits (the “N-1” criteria), and contingency state system risk, which 

depends only on contingency states but not the normal state. Each constraint group is scaled 

by a single parameter setting allowing tradeoffs between deterministic constraints and 

system risk. Relative to the security-constrained optimal power flow (SCOPF) used in 

industry today, the RB-SCOPF finds operating conditions that are more secure and more 

economic. It does this by obtaining solutions that achieve better balance between post-

contingency flows on individual circuits and overall system risk. The method exploits the 

fact that, in a SCOPF solution, some post-contingency circuit flows which exceed their 

limits impose little risk while other post-contingency circuit flows which are within their 

limits impose significant risk. The RB-SCOPF softens constraints for the former and 

hardens constraints for the latter, thus achieving simultaneous improvement in both security 

and economy. Although the RB-SCOPF is more time-intensive to solve than SCOPF, we 

have developed efficient algorithms that allow RB-SCOPF to solve in sufficient time for use 

in real-time electricity markets. In contrast to SCOPF, which motivates market behavior to 

offload circuit flows exceeding rated flows, the use of RB-SCOPF provides price signals 

that motivate market behavior to offload circuit flows and to enhance system-wide security 

levels. Voltage stability testing has demonstrated that the dispatch result based on RB-
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SCOPF has higher reactive margins at normal state and after a contingency happens, thus 

has better static voltage stability performance. 
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CHAPTER 1. INTRODUCTION 

 

1.1 The Need of Risk-based Approach in Electric Power Systems 

    Risk assessment (RA) has been widely used in other industries such as nuclear, 

aerospace, oil, food, public health, information technology and financial engineering. It is an 

emerging new topic in power engineering. Although the successful application of RA in 

other areas could provide valuable experience for the implementation of risk-based approach 

in power systems, the definition as well as the meaning of risk is quite different. In fact, risk 

assessment has a wide-ranging content. Traditional popular RA methods such as mean-

variance, Value-at-Risk and real operation approaches have been used in business and 

finance areas—this kind of risk approach primarily takes an angle from the economic 

perspective. The intent of this dissertation, however, is to discuss the models, methods and 

applications of engineering risk in physical power systems. The major difference of 

engineering risk and financial risk lies in their sources of uncertainties. For example, the 

financial risk is rooted from uncertainties of credit, investment, and market liquidity, et al., 

while the engineering risk comes from failures of equipment, behaviors of persons and 

conditions of weather, et al. In addition, the engineering risk should be in accordance with 

the physical law of power systems. 

According to an IEEE standard, risk could be calculated as the product of the probability 

a contingency occurs multiplied by the consequence of that contingency. In real world, both 

the probability and the consequence of an event occurrence are difficult to quantify. Thus, 

the risk management (RM) method, whose purpose is to identify, assess and prioritize risk, 

should be researched to minimize, monitor and control the probability and/or sequence of 
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unexpected events. There should be at least three tasks for risk management in power 

system: 

 Setting up standards or measures of quantifying the risk 

 Determining acceptable risk levels for power system operation or planning 

 Finding effective mechanisms to reduce the risk 

The application of risk management in power system is motivated by a perceived increase 

in the frequency at which power system operators are encountering high stress in bulk 

transmission systems and the corresponding need to improve security monitoring of these 

networks. Traditional security assessment approach in power system tries to capture risk 

with rules like the so-called “N-1 security criteria”, but does not do a good job at it. During 

the past years, the power system outage events have occurred a lot all around the world. 

According to a report by Ernest Orlando Lawrence Berkeley National Laboratory 

(“Understanding the Cost of Power Interruptions to U.S. Electricity Consumers”, 2004), the 

national cost of power interruptions in USA is about $80 billion annually. Some severe 

power outages have happened recently. For example, the Northeast Blackout occurred on 

August 14, 2003 in North America area affected an estimated 10 million people in Canada 

and 45 million people in eight states of USA. On November 10, 2009, a power outage 

occurred throughout much of Brazil and entirety of Paraguay (for a short time) affected an 

estimated 60 million people. These severe outages of power system lead us incentives to re-

examine the single-contingency criterion (N-1 principle) that has served the industry for the 

past decades. The N-1 criterion may not be sufficient to guarantee the system be within a 

reasonable security level. On the other hand, it is generally accepted that to implement N-2 

or even higher N-k (k ≥ 3) security principle may cause excessive financial and 
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computational costs for utility companies. Consequently, one attractive and applicable 

alternative is to adopt risk-based approach in the planning and operations of power system. 

We think that the risk-based approach will reduce the frequency and severity of high 

consequence events, but it is not clear if it would have eliminated these particular events. 

Risk is a measure of uncertainties. Another motivation of risk-based approach lies in the 

fact that the power industry is facing increasingly more uncertainties, which have brought 

great challenges to the security of power system. In July 21, 2011, the FERC (Federal 

Energy Regulatory Commission) issued Order 1000 which supports many states in USA to 

focus upon the following three topics of future power system: energy efficiency, demand 

response, and smart grid. All of them will increase the uncertainties of the system. Energy 

efficiency means using less energy to provide the same service. Some activities suggested 

by the IEA (International Energy Agency) to save energy, such as “turning off the lights 

when not using it” and “using a power strip to turn off stand-by power in electronics and 

appliances [1],” will increase the uncertainty on human’s usage of electricity.  Demand 

response is a mechanism to encourage customers reducing their electricity consumption in 

response to market prices. The ISOs (Independent System Operators) may even execute 

load shedding when necessary according to the demand side bidding price. The 

uncertainties, from both customer’s behaviors and demand side load forecasting, will make 

the operation of power system more complicated. Smart grid has a broad range of contents. 

Although its definition is various, the following characteristics are generally accepted to 

form the future smart grid environment: higher penetration of renewable generation 

resources, deployment of advanced electricity storage and peak-shaving technologies 

including plug-in hybrid electric vehicles (PHEVs), provision to consumers with timely 
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information and control options, increased use of information technology to improve 

reliability, security and efficiency of the electric power grid. Obviously, the smart grid 

environment will bring new challenges to the operation of power system. All these factors 

will force power utilities to operate and plan the system closer to the limits, thus lead to 

more stressed operation conditions. 

The risk-based approach is an emerging new direction that is studied and beginning to be 

used in power system planning [2][3] and maintenance [4][5]. Most of the previous work 

focuses on Risk-based Security Assessment (RBSA). Research on the application of risk-

based approach for real-time operation is rare. The major reasons are that the “N-1 

principle” applied in RBSA is simple to implement and to understand, and our operating 

paradigm and tools have not evolved to enable observation of its weakness. Reference [6][7] 

proposed the frameworks of risk-based approach application for power grid, but did not 

provide details on how to realize it. A risk-limiting dispatch under smart-grid environment 

was proposed in [8]. Although it has provided models taking into account the stochastic 

nature of renewable sources and the demand response, it is difficult to extend the model in 

real-world large-scale power systems. Thus, the following problem becomes critical: 

 

 How to embed risk and the benefits of its use into the real-time operation software 

of today’s ISO-based power system while maintaining it to be mathematically 

rigorous and computationally tractable, without decreasing the system’s overall 

security level? 
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    The purpose of our work is to motivate the application of risk-based operation approach 

in ISO’s real-time dispatch procedure. To this end, the proposed approach should be able to 

satisfy the operational requirements of a large power system. For example, it is not a good 

idea to apply chance-constrained programing model in power system operation. The chance-

constrained programing is a popular risk management method. A generally used approach to 

solve the model is Monte Carlo simulation. However, the Monte Carlo simulation is an 

experiment-based computational algorithm that relies on repeated random samplings. 

Usually large amount of original sample is needed to get the desired results. It would be too 

time consuming to be applied in power system operation. 

Considering the above requirements on the ISOs-oriented dispatch software, we proposed 

a so-called Risk-based Security-Constrained Optimal Power Flow (RB-SCOPF) model for 

the purpose of replacing the current SCOPF model. In the following chapters we will 

present the mathematical fundamentals, the computational strategy and the industrial 

applications of RB-SCOPF model. The RB-SCOPF has an alternative name of RB-SCED 

(Risk-based Security-Constrained Economic Dispatch), which may appear in the following 

chapters. A key challenge to implement RB-SCOPF is its high computational 

dimensionality, as introduced in what follows. 

 

1.2 Literature Review 

1.2.1 Definition of power system security 

To ensure the reliable operation is a critical task for the safe and economic operation of 

power systems. The NERC (North American Electric Reliability Council) defines power 

system reliability as follows [9]: 
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“Reliability, in a bulk power system, is the degree to which the performance of the 

elements of that system results in power being delivered to consumers within accepted 

standards and in the amount desired. The degree of reliability in operations may be 

measured by the frequency, duration and magnitude of adverse effects on consumer 

service. The degree of reliability in operational and long-term planning is measured 

by the predicted performance of the system in studies to provide acceptable 

performance for credible contingencies while considering sensitivity in the 

assumptions that define the operational state being studied.” 

The reliability of bulk power system can be addressed by considering two basic and 

functional aspects [9]: 

 Adequacy is the ability of the bulk power system to supply the aggregate power 

and energy requirements of the consumers at all times, taking into account 

scheduled and unscheduled outages of the system components. 

 Security is the ability of the bulk power system to withstand sudden disturbances 

such as electric short circuits or unanticipated loss of system components. 

     The adequacy is usually interpreted as the system’s ability to supply the load without 

violating the circuits and bus voltage ratings, while the security is interpreted as the 

system’s ability to withstand sudden disturbances in a short-term, which is the so-called 

transient effect. In this dissertation, we address the security of power system with the 

manner in which the potential of outage events have impacts on operation and planning 

decisions. The disturbances introduced here include 3 types of problems: overload of 

circuits, low voltages and cascading. We do not assess and control dynamic security, which 
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refers to transient instability and oscillatory instability, in this dissertation. It is another 

important topic to be addressed in future work. 

    Traditionally, the NERC standard requires that electric transmission systems be operated 

under disturbance-performance criteria, where a disturbance resulting in loss of any single 

component such as transmission line, transformer or generator (NERC class B) or 

simultaneously loss of two components (NERC class C) will result in performance that is 

within stated criteria. Typical criteria includes branch flows within designated ratings, bus 

voltage variations are within a certain range, voltage stability margins are above specified 

thresholds, no cascading, and no out-of-step conditions. To accomplish the NERC 

disturbance-performance criteria, the control center must continuously assess the conditions 

of power system to detect if the system operation condition is unacceptable, monitor 

security assessment to decide when actions need to be taken and what actions to take. All 

these will be helpful to maneuver the system back into acceptable conditions. 

In today’s control center, the assessment, monitoring, and decision are based on the 

security analysis function within the Energy Management System (EMS), where the pre-

contingency activities and predicted violations are its basis. For example, security 

assessment results are used to monitor the predicted post-contingency performance of 

elements. A decision making process begins as soon as any single contingency is predicted 

to violate the performance criteria. Overload on transmission lines generally require 

generation re-dispatch, and voltage instability on buses is usually addressed by increasing 

reactive power supply. 

However, there are at least 3 other influences that are not addressed in the above decision 

making process: 1) The likelihood of contingencies: loss of a 100 mile length transmission 
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line at severe weather is more likely than loss of a 10 mile length line at normal weather—

traditional assessment approach treats them equally. 2) The extend of violations: a 10% 

post-contingency overload on a 500 Amperes rated line may be of less concern than a 5% 

post-contingency overload on a 1000 Amperes rated line. 3) The number of violations: an 

operating condition whereby one “N-1” contingency results in a single post-contingency 

violations is of less concern than an operating condition whereby several different “N-1” 

contingencies result in multiple post-contingency violations.  

Today’s EMS security assessment functionality does not have the ability to provide 

automated decision-supports in ways that account for the above influences. This leads to an 

important motivation for our research—to develop approaches and tools that are able to 

provide quantifiable results to account for some or all of the above influences. 

Fig. 1.1 indicates the power system operating states [10]. Five operating states are 

described for the power system conditions: normal, alert, emergency, in extremis (or 

extreme emergency), and restorative. There are two types of constraints for power system 

operation: equality constraints, which refer to the power balance equation, and the inequality 

constraints, which generally means the system variables must not exceed the practical 

limitations. In the normal state, all the constraints are satisfied. The system is secure and is 

able to withstand the loss of any one pre-defined contingencies. The system enters the alert 

state if the system security level falls below a certain limit, or if the probability of a 

disturbance increases due to adverse weather conditions. The system may enter emergency 

state or in extremis state from the alert state if a sufficiently severe disturbance really occurs, 

depending on the severity degree of the disturbance: in emergency state only inequality 

constraints are not satisfied, while in in extremis state both inequality and equality 
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constraints are not satisfied. The restorative state stands for such a condition that control 

action is being taken to reconnect the facilities and to restore the system load. Only equality 

constraints are not satisfied in restorative state. The system may transits from restorative 

state to either normal or alert states. 

 

Normal State
(Tracking load ,  minimizing cost, system 

coordination)

Restorative Alert

In extremis Emergency

System 

Restoration Preventive 

Control

Reduction in 

Reserve Margine

System 

Restoration

Emergency 

Control
Emergency 

Control

Violation of 

Limits

Controlled Transition

Uncontrolled Transition
 

Fig. 1.1.  Power system operating states 

 

    Traditional security-based decision such as the “N-1criteria” is a worse-scenario approach 

that any normal state is acceptable, and the other states are not acceptable. The weakness of 

the traditional approach is that it lacks a quantitative method to measure the security level 

and distinguish between the states. Consequently, rough rules of thumb are adopted in the 
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decision process. Most importantly, lack of a security level index disguises the fact that it is 

hard to distinguish the alert state and the normal state, in both of which the equality and 

inequality constraints are satisfied and unexpected events may cause undesirable 

consequences. Thus, the risk index is a good metric to distinguish the operating conditions 

of different states, and quantify the likelihood and/or severity of undesirable consequences. 

 

1.2.2 Power System Security Assessment 

    Security has costs. A higher security level generally means higher costs, and vice versa. 

References [11]-[12] proposed the framework on computing the value of security. Security 

assessment (SA) refers to the analysis that is required to determine if the system can fulfill 

specified criteria in reliability and security for both transient and steady-state conditions 

under all credible contingencies [13]. Historically, there are two types of power system 

security assessment: deterministic approach and probabilistic approach. The deterministic 

approach generally refers to the “N-1” criterion applied in the operation and planning 

procedure of power industry, while the probabilistic approach accounts for the probabilistic 

nature of system conditions and is able to quantify and manage system risk. 

    The deterministic approach has been applied in the industry for a long time [14]-[17]. 

Under the deterministic framework, system security analysis is performed in terms of the 

thermal loading of system elements [18], voltage and frequency variations for both transient 

and steady states [19]. The basic idea is that the system is able to withstand a set of selected 

contingencies, which are supposed to have a significant likelihood of occurrence. Although 

the deterministic approach has well-served the industry on supporting the economic and 

secure operation of power system in the past decades, there has been a tangible price to pay 
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for applying it: the solution tends to be conservative because it tends to focus on the most 

severe events. Consequently, it may lead to such situations that existing facilities cannot be 

fully explored (in operation), or system resources be overbuilt (in planning). Another 

weakness of deterministic approach is that there is no index to measure the system’s security 

level, thus it is difficult to integrate security into the economic decision-making process. 

The probabilistic approach roots from the nature of probabilistic behaviors in power 

system. For example, the random failure of power equipment is usually beyond the control 

of system personnel; loads will always be uncertain and it is impossible to forecast the load 

exactly precise. It is known that the probabilistic methods have been used as powerful tools 

in various kinds of decision-making process [20]-[28]. In the works from [29] to [33], the 

authors focus on developing risk indices, which consider both the likelihood and the severity 

of events, to capture the probabilistic nature of power system. One of the most attractive 

implementation of the proposed methodology is to perform the on-line risk-based security 

assessment (RBSA) [34]-[37]. Compared to traditional online security assessment who 

always performs security assessment on a past condition (i.e., the last state-estimation), the 

RBSA has the feature that it performs security assessment on a near-future condition. One 

significant advantage of this feature lies in that information on which the decision is based, 

from the assessment, corresponds to the time frame in which the decision is effective [36]. 

Although the deterministic methods are still dominated in the industry, there is consensus 

that using probabilistic approach has great potential to improve on analysis and decision-

making. 
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1.2.3 Security Control and Optimization 

    Power system control usually includes the following actions: prime mover and excitations 

controls, system frequency control by unit commitment and MW outputs, reactive power 

and voltage controls, transformer taps controls, shut reactors and capacitors control, and line 

or bus-bar switching control. The security control is an important function in today’s EMS 

control centers to guarantee the secure operation of power systems. Two kinds of security 

controls are generally applied: 

 Preventive Control, which generally includes actions like generation rescheduling 

and selecting reasonable reserve margins. The preventive control will restore the 

system from alert state to normal state, as shown in Fig. 1.1. 

 Corrective Control, which is established to restore the system after the post-

contingency events occurs. The corrective controls are usually employed to restore 

the system from emergency state to alert state. 

    In power system operation and planning procedure, we usually need to optimize an 

objective function, such as the generation costs or the control changes from base-case, along 

with scheduling control actions to achieve the system being operated at a desired security 

level. This leads to the development of “optimal power flow (OPF)” problem. Literatures on 

solving OPF problem could generally be summarized into 4 major types: 1) linear 

programming (LP) and successive linear programming (SLP). Linear programming was 

used at the early stage due to the limitations on computer hardware [38]-[39]. Successive 

linear programming is a technique to approximately solve nonlinear optimization problems. 

Reference [40] introduces the application of SLP in the procedure of solving nonlinear OPF 

problem by iterations between AC power flow and linearized LP optimization. 2) Interior 



www.manaraa.com

13 
 

 

 

point method, which has been generally applied in power system to solve both linear and 

nonlinear optimization problems [41]–[43]. Due to its speed of convergence and 

convenience of handling inequality constraints, the interior point method has become a very 

appealing approach to the OPF problem. 3) Quadratic programming (QP), which is a special 

form of nonlinear programming with the objective function being quadratic and constraints 

be linear. The QP has higher accuracy than pure LP. Its advantage is that the objective 

function is convex, thus a global optimal solution could be guaranteed [44][45].  4)  

Heuristic method. It is a technique of searching in the solution space by moving around the 

neighbors of a known solution in a certain direction such as the steepest ascent [46]. The 

major heuristic method includes evolutionary algorithm, simulated annealing, tabu search, 

ant colony search and fuzzy programming.  

    Security-constrained OPF (SCOPF) problems are a special class of OPF problems. It 

iterates between a base-case OPF problem and a set of predefined contingency system 

states. To ensure the security of system, a so-called “N-1 criteria” is applied, i.e. there 

should be no violations after the outage of any single element I the system. This leads to the 

implementation of preventive mode of SCOPF. Since it does not allow the post-contingency 

control capabilities, the preventive mode is usually conservative. If we allow rescheduling to 

the N-1 security concept, it leads to the corrective mode of SCOPF. The preventive mode is 

the most secure yet the most expensive solution mode. The corrective mode is less secure 

but with lower cost since it allows the rescheduling of resources at post-contingency states. 

It is usually more difficult to solve than the preventive mode. Sometimes people use a 

combined preventive/corrective mode — some of the violations are relieved in preventive 

mode, and the rest in corrective mode. 
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    In previous literatures, numerous works have been focused on how to reduce CPU times 

and computer memory so as to improve the efficiency of SCOPF problem [47]-[49], which 

indicates that the computation of SCOPF is arduous. Attempting to solve the SCOPF 

problem directly by simultaneously imposing all post-contingency constraints might lead to 

unacceptable CPU time and memory. Alternatively, the Benders Decomposition [50], and 

its general form [51] has been used widely to solve SCOPF problems. For example, the 

application of BD to preventive and corrective SCOPF was described in [47] and [48], 

respectively.  

 

1.3 Current Industry Real-time Procedures  

    The objective of establishing an electricity market is to facilitate an economical operation 

while ensuring the security of the system. Two major components are included for the 

operation of today’s ISO-based electricity markets: day-ahead market clearing process and 

real-time market operation. Their structures are indicated in Fig. 1.2 and Fig. 1.3, 

respectively. 

Fig. 1.2 shows the clearing process of day-ahead electricity market. The market 

participants submit their supply and demand bids to the ISO. At first, a pure unit 

commitment problem (without network constraints) is solved in the Resource Commitment 

application (RSC) procedure. This generally involves solving a mixed integer programing 

(MIP) problem. The resources commitment (on and off status) result is sent to the market 

clearing engine (MCE) to identify the optimal dispatch (MW and PAR angle) of resources. 

Then the dispatch result is sent to the Network Security Analysis procedure to check if there 

is overload violation on the circuits for both normal and post-contingency states. This is 
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called the simultaneous feasibility test (SFT) [52] process. If there are no violations, the 

market clearing result is obtained. Otherwise, the SFT will generate generic constraints that 

will eliminate the violations.  The generic constraints are fed back to the MCE to re-dispatch 

the resources. If the MCE finds that the current resource commitments are not sufficient to 

support the secure dispatch, the UC problem is solved again to recommit the available 

resources. Otherwise, the MCE will find the optimal result thus the market clearing results 

could be obtained. 
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(Market Clearing Engine)

Network Security Analysis
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Daily Resource Schedules
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Fig. 1.2. The clearing process of day-ahead electricity market 
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Fig. 1.3. Real-time operation of power system and electricity market 

 

    Fig. 1.3 demonstrates how the real-time power system and electricity market are operated 

[53]. The system and the market are two interconnected components in the operation of 

ISOs. Historically, ensuring secure operation of the system has always been a critical task. 

Thus, the system conditions are sent to a so-called Security Assessment (SA) procedure to 

examine if the current system is secure. The SA includes static security assessment, which 
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includes contingency analysis (CA), and dynamic security assessment (DSA), which 

includes transient stability analysis and voltage stability analysis. The static security 

assessment will generate thermal constraints, which are able to protect the transmission 

facilities from thermal overload. The dynamic security assessment will generate generic 

constraints, which are able to protect the transmission system from transient instability and 

voltage collapse.  On the other hand, the CA result will be sent to a Security Enhancement 

procedure to generate control recommendations to operators. The purpose of security 

enhancement is to implement control actions to enhance the system’s security level, which 

is realized through the security-constrained optimal power flow (SCOPF). The SCOPF 

formula is usually divided into two parts: the active power sub-problem and the reactive 

power sub-problem. The SCOPF is solved by LP optimization, with the objective function 

of minimizing the control changes from the base-case. The constraints generated in Security 

Enhancement procedure are selected by the system operators, and then sent to the 

Transmission Constraints Management (TCM), along with the thermal and generic 

constraints generated in SA. The TCM will determine activated constraints for the security- 

constrained economic dispatch (SCED).  Based on market participants’ offers, SCED 

produces a least cost dispatch of resources to meet the system requirements including the 

transmission constraints and resource limit constraints. The SCED generates LMP for the 

market and base points for system operation. 

 

1.4 Basic Concept of Risk-based OPF 

In this section we will present the basic concept of RBOPF, without exploring the details 

of formulations and computational strategies. At first we introduce the so-called security 
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diagram proposed in [54], as shown in Fig. 1.4 (a) and (b). The information provided in 

these figures is described as follows: 

 Security regions: There are three regions: emergency region, highly-stressed 

region, and less-stressed region, corresponding to the areas with red, yellow and 

while colors, respectively. If only overload violations are considered, the less-

stressed region refers to the circuit loading less than 90% of the emergency rating; 

the highly-stressed region corresponds to loadings less than 90% of the emergency 

rating; the emergency region corresponds to loadings in excess of emergency 

rating. 

 Probability sectors: Suppose for this particular system, there are five post-

contingencies: C1 to C5. Note that the contingency set in real power system is 

very large, and we may just list the contingencies that bring the system to 

emergency or highly-stressed regions. The angular spread of each sector is 

proportional to the contingency probabilities. For example, C4 has the largest 

probability among the five. 

 Severity circles: The small circles L1, L2, L5, L8 and L9 represents circuits with 

post-contingency overload violation or near-violation. In this system, some circuit 

numbers such as L3, L4, L6 and L7 are not listed in the figure because these 

circuits will not cause highly-loaded conditions. Radial distance from the center of 

the diagram to each small circle is proportional to the extent (severity) of the 

violation. For example, L1 in Fig. 1.4 (a) means flow at circuit L1 is 97.5% of its 

emergency rating under contingency C4. 
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(a) Security diagram for the solution to 

SCOPF 

(b) Security diagram for the solution to 

RBOPF 

Fig. 1.4. Security diagram, C1, C2, C3, C4 and C5 are contingencies; L1, L2,  

L5, L8 and L9 are lines with post-contingency flow over 90% of their emergency ratings  

 

Fig. 1.4 (a) and (b) demonstrate the benefits of RBOPF over SCOPF. In (a), all the post-

contingency circuit flows will not exceed their contingency ratings, as is requirement of the 

“N-1 principle”. However, this is a highly stressed system since some high-probability 

circles are located close to the red zone. In contrast, the RBOPF result in (b) shows high-

probability circles L1, L2 and L9 move closer to the white zone, at the cost of moving low-

probability circles L5 and L8 closer to the red zone. By this way, lower risk is achieved by 

decreasing severity on high probability violations L1, L2 and L9 while increasing severity 

of low probability violations L5 and L8. Although one violation L5 exceeds its deterministic 

limit, the overall system risk is lower.  
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1.5 How RB-SCOPF fits into real-time procedures 

    As shown in Fig. 1.3, the current industry is using SCED in the real-time electricity 

market to minimizing the bidding costs, and using Security Assessment and Security 

Enhancement to guarantee the secure operation of system. If we replace SCED with RB-

SCED, the following components should be changed/improved to fit into the new real-time 

dispatching pattern: 

 Replace SCED with RB-SCED. This will require developing new algorithms to 

solve the RB-SCED problem, as the work done in the following chapters. The 

corresponding components in the EMS should be modified as well. Since the RB-

SCED is more computationally intensive than SCED, thus there is higher 

requirement on hardware.  This is possible with today’s computing and analysis 

tools. 

 New market clearing mechanism. In current electricity markets, LMPs are obtained 

by solving the SCED problem. The LMP at a location is defined as a cost of 

supplying an increment of load at this location. It could be split into three 

components: energy component, loss component, and congestion component. If RB-

SCED is applied, the three components will have some modifications in their form. 

In addition, there should be an additional risk component. 

 Change of Security Assessment module. The major change comes from there is need 

to use Adaptive Emergency Transmission Rates (ATR) [55], since we allow a 

certain degree of post-contingency overloading in RB-SCED model. Although ATR 

permits post-contingency violations within a certain time interval, the system 
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reliability is not degraded because the system could be recovered to normal state in 

reasonable time. 

 Modification for the reporting results in Contingency Analysis (CA) process. In 

current ISO software, the CA process only reports the shift factors and contingency 

numbers related to the overloading (>100% limit) circuits. The set for these circuits 

is usually not large. However, if RB-SCED is applied, there is need to report/save 

shift factors and contingency numbers for the highly-stressed (>90% limit) circuits. 

There is an increase in the computational burden. 

 Set up a new module with the function of computing the contingency probabilities. 

There does not exist such a module in the real-time electricity market, since the 

deterministic approach has been applied. To fully address the benefits of 

probabilistic approach, we need to compute the probability that a contingency may 

occur by comprehensively considering the real-time information of the system’s 

operational condition and the weather, as well as the historical outage data 

information. 

 

1.6 Structure of Dissertation 

    The structure of this dissertation is summarized as follows. 

 In chapter 2, we proposed a computational strategy to solve preventive RB-SCOPF 

model. The benefit of Risk-based (RB) security-constrained optimal power flow 

(SCOPF) model lies in its ability to improve the economic performance of a power 

system while enhancing the system’s overall security level. However, the RB-

SCOPF model is difficult to solve due to the following two characteristics: a) the 
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overload severity of a circuit changes with the loading condition on it, thus is hard to 

express with a deterministic function, and b) the risk index is a function of the state 

variables in both normal and contingency states, which greatly increases the scale of 

optimization. To handle the first issue, a new expression of severity function is 

proposed so that it is possible to decompose the model into a SCOPF subproblem 

and a risk subproblem. To deal with the second issue, a nested Benders 

decomposition with multi-layer linear programming method is proposed. 

Illustrations use the ISO New England bulk system is provided to demonstrate the 

feasibility of the proposed method. Analysis is presented to demonstrate the merits 

of the RB-SCOPF over the traditional SCOPF model. 

 Chapter 3 demonstrates how to use Lagrangian relaxation and Benders 

decomposition to solve corrective RB-SCOPF. This chapter presents an efficient 

decomposition based algorithm to solve the corrective risk-based security-

constrained optimal power (CRB-SCOPF) problem. The mathematical formulation 

was proposed imposing, in addition to the traditional post-contingency corrective 

constraints, risk constraints related with both single circuits (type I risk constraints) 

and the whole system (type II risk constraints). To solve CRB-SCOPF model is very 

difficult since the risk index is a function of state variables in all normal and 

contingency conditions, thus greatly increases the optimization problem size. The 

proposed approach applies Lagrangian relaxation to the type II risk constraints so as 

to manage the coupling risk index over the entire system. The remaining problem, 

called the Lagrangian dual problem (DP), can be solved by the Benders 

decomposition method. The master problem in DP is a ‘base-case’ economic 
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dispatch problem associated with corresponding type I risk constraints, and the 

subproblems are independent contingency analysis with generation rescheduling to 

eliminate constraint violations.  The iterative process will terminate until a 

converged optimal solution to DP is found. An updated Lagrangian multiplier could 

be obtained based on the optimal solution. The whole algorithm will be stopped 

when the multiplier difference between two consecutive iterations is below a pre-

specified threshold. The proposed approach has been test on the IEEE 30-bus system 

and the ISO New England bulk system. 

 Chapter 4 presents the framework of applying RB-SCED in the industry by 

embedding the algorithm into commercial software. The work presented in this 

chapter was motivated by a perceived increase in the frequency at which the power 

system operators are encountering higher stressing operation conditions, especially 

with the increasing uncertainties in power system due to the integration of renewable 

resources and price responsive demand. To deal with the emerging challenges, we 

propose a novel risk-based security-constrained economic dispatch (RB-SCED) for 

the online operation of power system. The RB-SCED model is able to control the 

system’s overall loading stress while handling the uncertainties of post-contingency 

states. Three different operational conditions for RB-SCED model are provided, thus 

enables the system operators to make tradeoffs between the economy and security of 

the system. A combined use of Lagrangian relaxation and Benders decomposition 

was developed to solve the model. To improve computing efficiency for large 

system, we performs simultaneous feasibility test (SFT) to make the network 

sensitivity analysis. Test results based on ISO New England system are illustrated. 
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 Chapter 5 show how cost and risk change in RB-SCOPF and SCOPF, using 

coordination parameters in RB-SCOPF to effect tradeoffs between system risk and 

“N-1” criteria, and thereby characterize conditions under which RB-SCOPF 

outperforms SCOPF.  The KR-KC coordination diagram is developed for decision-

support that enables efficient security-economy tradeoff analysis. An efficient 

algorithm to find “breakpoints” in the KR-KC coordination diagram. In addition, this 

chapter shows how system risk and post-contingency overload levels on individual 

circuits can be coordinated to enhance both economy and security of a power system 

in real-time operations, and identifies types of conditions for which high-security 

and high-economy modes would be best suited. 

 Chapter 6 develops a new pricing mechanism in electricity market, called the Risk-

based LMP (RLMP). It is derived based on the RB-SCED model in Chapter IV. 

Traditionally, the LMP is calculated with three components: marginal energy, 

marginal loss and marginal congestion. The RLMP includes, in addition to the three 

components, a new component called marginal risk. The risk component is a price 

signal to reflect the system’s overall security level. We have researched the features 

of RLMP on a six-bus system by answering the following three questions: 1) What is 

the meaning of the risk component? 2) Which generators/loads would likely see 

higher (or lower) prices? 3) How does the choice of KR and KC affect the RLMP? 

We have found in the test that RLMP can exclude some extremely high pricings in 

the system and make the price difference between nodes smaller. 

 Chapter 7 compares the voltage stability performance of operating conditions 

obtained from RB-SCOPF and SCOPF, respectively, using a steady-state voltage 
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instability index. For both the RB-SCOPF and the SCOPF operating conditions, we 

model a fictitious synchronous condenser (SC) with very wide reactive limits (e.g., 

±1000 MVARs) at one reactive-weak extra-high voltage (e.g., 345 or 500 kV) bus in 

the system. We use the SC to vary the voltage from its nominal value to a very low 

value, identifying the bus reactive injection necessary from the SC to hold the given 

voltage. All the evidences demonstrate that RB-SCOPF has better performance on 

voltage instability analysis than SCOPF. 

 Chapter 8 summarizes the main contribution of the dissertation and proposes the 

future work. 
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CHAPTER 2. A COMPUTATIONAL STRATEGY TO SOLVE PREVENTIVE 

RISK-BASED SECURITY-CONSTRAINED OPTIMAL POWER FLOW 

 

2.1 Introduction 

    Power system operation is essentially a decision-making process that meets the power 

demand in an economic way while maintaining system security [2], [56]-[58].  The power 

industry often adopts the so called “N-1 security criterion” that requires the system as a 

whole to sustain failure of any single element, such as generator, transformer, or 

transmission line [59], thus ensures the security of power system after the occurrence of any 

single contingency. This criterion leads to the implementation of a widely-used optimization 

problem called security-constrained optimal power flow (SCOPF) in power system [60]-

[65].  The SCOPF approach treats the power system in a deterministic way: the system will 

be either secure or insecure – it cannot quantify how secure the system could be. For 

example, it is not able to distinguish between violations that occur from contingencies with 

different likelihood, nor is it able to distinguish between violations that occur with different 

severity. Hence, risk, a probabilistic index which captures event likelihood and 

consequence, is proposed in previous work [29] [36] to represent system health, and the 

corresponding risk-based optimal power flow (RBOPF) [54][66] was proposed to improve 

on the traditional SCOPF. The RBOPF could result in less cost and higher security 

operational level on power system than SCOPF [67][68]. In this chapter, we develop a new 

preventive risk-based security-constrained optimal power flow (RB-SCOPF) model, which 

coordinates the constraints associated with both the “N-1” contingencies—considered in 

SCOPF and the risk—considered in RBOPF. The RB-SCOPF model enables the system 
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operators to make tradeoffs between economy and security, and between system’s security 

and circuit’s security. 

The major difficulty of RB-SCOPF problem lies in both high computing burden and 

model dimensionality, especially when the system is large and many contingencies are 

considered. Attempting to solve the problem by simultaneously imposing all the post-

contingency constraints will cause prohibitive requirements on memory and CPU [48]. The 

objective of this chapter is to propose a computational strategy to solve preventive RB-

SCOPF. The major contribution is that we propose a new expression of severity function 

and a nested Benders decomposition [50] [51] framework to solve the problem. By 

transferring the deterministic severity function into an optimization problem, it is possible to 

decompose the model into a SCOPF subproblem and a risk subproblem. In addition, the 

method does not rely on the form of the severity function, as long as it is convex. The nested 

Benders decomposition technique is inherently a two-layer linear programming. We provide 

the simulation results based on ISO New England bulk system using the proposed approach. 

 

2.2 Benders Decomposition Method Introduction 

The Benders decomposition (BD) algorithm was first proposed by [50] to solve large-

scale, mixed-integer linear programming problems [MILP].  It divides the full problem into 

a master problem (which could be linear or nonlinear, and continuous or integer), and linear 

programming sub-problems. The method was further generalized by [51], thus extent to the 

so-called generalized Benders decomposition (GBD) and make it be able to solve nonlinear 

problems. 
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The structure of optimization problems that could be solved by Benders Decomposition is 

shown as follows: 

                                  ( ) ( )z Min c x d y   (2.1) 

                                            s.t. A(x) ³ b (2.2) 

                                                     ( )E x F y h   (2.3) 

where constraint (2.3) is referred to as the coupling constraint, and matrix E is called the 

coupler. In the above form, E is a linear matrix, while matrix A and F could be non-linear. 

The problem (2.1)-(2.3) could be decomposed into three easier-to-solve problems: master 

problem, feasibility sub-problem, and optimality sub-problem. 

 Master Problem 

The master problem is 

( ) ( )z Min c x x   (2.4) 

                                          . . ( )s t A x b  (2.5) 

where ( )x is the estimated lower bound of the optimality sub-problem as a function of 

decision variable x in the master problem. z is the lower bound of the lower bound of the 

original problem and is iteratively updated by solving the optimality subproblems. The 

optimal solution
*x obtained from the master problem is used in the feasibility and 

optimality sub-problems. 

 Feasibility subproblem 

    The function of feasibility sub-problem is to check if (2.3) is satisfied based on given
*x

from the master problem. A slack vector denoted as s is usually introduced to formulate the 

feasibility-check sub-problem: 
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1Tv Min s  (2.6) 

                                          
*. . ( )s t F y s h E x    (2.7) 

where 1T
is the vector of ones. Since 0s   and could be large enough, the problem (2.6) - 

(2.7) should always be feasible. If the optimal solution v is greater than 0, it means there are 

violations in the subproblem. In order to eliminate the violations, the feasibility cut (2.8) 

should be added to the master problem: 

*( ) 0v E x x    (2.8) 

where  is the Lagrangian multiplier vector for inequality constraints (2.7). 

 Optimality subproblem 

    If for a given
*x from the master we have identified that constraint (2.3) is feasible, we 

need to solve a so-called optimality-check subproblem as follows: 

( )w Min d y  (2.9) 

                                          
*. . ( )s t F y h E x   (2.10) 

where optimal function value w is just the ( )x in equation (2.4) when
*x x . 

The optimality cut to be added to the master is shown as follows: 

*( )w E x x     (2.11) 

where is the Lagrangian multiplier vector of inequality constraint (2.10). 

In the Benders decomposition scheme, the iterations between master problem and 

subproblem are shown as follows: 

a) Start with an approximation ˆ( )x which is a lower bound to ( )x . 

b) Solve the master problem (2.4) – (2.5), obtain the optimal solution
*x .  
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c) It is possible to show that the optimal objective function value z of problem (2.4) – 

(2.5) is a lower bound to the original optimal solution. 

d) Solve the feasiblility-check subproblem, as shown in (2.6) – (2.7). If v is greater 

than 0, add a feasibility cut (2.8) to the master problem, and go to b). Otherwise, go 

to step e). 

e) Solve the optimality-check subproblem (2.9) – (2.10). If the optimal objective 

function value ( )w x , add a optimality cut (2.11) to the master problem, and go 

to step b). Otherwise, the optimal solution of the problem has been obtained, the 

algorithm stops.  

 

2.3 General Formulation of Preventive RB-SCOPF 

2.3.1 Overview of risk index 

    Risk is a probabilistic index defined to reflect the severity of the system’s operation 

condition [36]. Commonly used indices include overload, cascading overload, low voltage 

and voltage instability [69]. Since the purpose of this chapter is to enhance computational 

efficiency of the RB-SCOPF for real-time operation, only the risk of overload is considered 

in the model. Define E0 as the system’s loading condition at normal state and Ei (i = 1, 2, .., 

N) at contingency states. The risk of the system at certain time t is then 

0

( ) ( , ) ( , )
N

i i

i

Risk t Pr E t Sev E t


  (2.12) 

where Pr(Ei, t) is the probability of state i at time t, and Sev(Ei, t) is its severity at time t. We 

only consider a single time period, such as 1 hour, in this chapter. For multiple periods, the 

proposed method should be the same. 
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2.3.2 Probability of post-contingencies 

We desire to measure risk associated with defined events that may potentially cause 

specific contingencies, which are associated with a given topological state of the system. 

Therefore, we assume that the topological state just previous to occurrence of the event, i.e., 

the normal state, is known with probability identical to one. In addition, in keeping with 

traditional “N-1” security criteria, we assume those events resulting in simultaneous loss of 

more than one component have probability zero. For the event “outage of circuit i”, we may 

use Poisson process [70, pp. 246] to model it. The probability of a certain post-contingency 

event is the probability that it occurs at least one time in next hour, meanwhile all the other 

post-contingency events do not occur. Thus the probability for event Ei is [68]:  

Pr( ) (1 )*exp( )i-λ

i j

j i

E e 


    (2.13) 

where i is the occurrence rate of contingency i per time interval. The statistical approach to 

compute i is detailed in [71]-[72], in which i is a function of weather, geography and 

voltage class. 

The probability calculation for each operating point should be adapted to the market 

operation procedure. Fig. 2.1 indicates the timeline of market operation.  The day-ahead 

market clears before T0 of day 1, resulting in the UC and RB-SCED outcomes for the next 

day.  Before the real-time operation hour T of day 2, the probability results need to be 

prepared for the real-time RB-SCED calculation. Thus, the procedure of probability 

calculating should be finished in time interval [tN-1, tN] based on the close real-time 

operation information of power system, such as the forecasted load, the physical condition 

of equipment, and the weather. 
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Day 1 Day 2

Midnight
T0 tN-1 tN tN+1... ...

Day-Ahead

Operating 

Hour T
Hourly-

Ahead

 

Fig. 2.1. Market operation timeline 

 

2.3.3   Overload Severity 

The overload severity function should quantify the consequence of the contingency and 

properly reflect the system loading condition. It is the fact that the power flow as percentage 

of rating (PR) of each circuit determines the overload severity of that circuit: the higher the 

PR is, the more severe the loading condition is, and vice versa [36]. Thus, a rational 

expression of overload severity function could be shown as the dashed line in Fig 2.2 It is a 

continuous differentiable function with severity value equal to 1 when PR is ±1, and with 

increasing slope with absolute value of PR. The benefits of using a continuous differentiable 

function lie in that it measures the loading condition of every circuit, rather than just 

measure those circuits with PR over 0.9 which was the case in references [67][68], hence 

improves the measurement accuracy. The only issue is that this function needs to consider 

every circuit at both normal and contingency states, and thus it may cause prohibitive 

computational burden. Consequently, we make a linear approximation for this function, as 

shown in the solid line of Fig. 2.2. The intersection with horizontal axis at point c denotes an 

expected severity threshold — for PR below this value the circuit is considered to have zero 

severity. The value of c could be adjusted based on the perspective of the operating 
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organizations. The expression of the piece-wise linearly overload severity function for a 

single circuit l is: 

max max

max max

max max

( / ) / ( 1),

0,

( / ) / (1 ),

l l l l l l l

l l l l l l

l l l l l l l

PL PL c c PL c PL

Sev c PL PL c PL

PL PL c c PL c PL

   


   
   

 (2.14) 

where PLl is the power flow of circuit l and PLlmax is its transmission limit, and

max
/

l l
PR PL PL .The approach adopted here depends only on the severity function being 

convex. 

 

Severity of Overload

0-1 1

1

PR

-c c

 

Fig. 2.2. Severity function of circuit overloading 

 

    The overload severity function as shown in Fig. 2.2 is applied in Chapter 2 and Chapter 3. 

A more practical severity function will be applied in Chapter 4, motivated by the concept of 

adaptive emergency transmission rates (ATR), which has been successfully applied in the 

control room of ISO New England [52]. The ATR is a novel concept of using continuous 

adaptive rates rather than discrete emergency rates.  Fig. 2.3 illustrates the shape of 

calculating transient thermal rate as a function of time on the typical conductor DRAKE 

ACSR [73]. Traditionally, discrete rates are selected for the operational constraint of a line. 
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For example, the ISO New England operating procedure has defined 3 emergency ratings 

[74]: 1) Long time emergency (LTE) rating, which is intended to fit a daily load cycle for 4 

hours in winter and 12 hours in summer. A facility may operate up to this rating provided 

that its loading could return to or below normal rating during off-peak hours. 2) Short time 

emergency (STE) rating, which is a 15 minute rating. A facility operates at this rate for more 

than 15 minutes will suffer thermal damage on equipment. 3) Drastic action limit (DAL), 

which is an immediate action rating. A facility operates at this rate for more than 5 minutes 

will cause thermal damage to equipment. The STE and LTE could be fixed or temperature 

dependent. The latter is called “dynamic rates” and is beginning to be used in the industry 

[75]-[77]. Typically, the system operator has to use conservative LTE as the post-

contingency emergency rates, which may result in more than necessary restrictive 

transmission constraints. The ATR concept intends to adaptively select Emergency rating, 

which could be any point between STE and LTE, by utilizing the post-contingency system 

ramping capabilities and pre-contingency conductor loading. 

 

 

Fig. 2.3. Normalized transient emergency rate as a function of time on conductor DRAKE 

ACSR 
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An applicable overload severity function is proposed based on the ATR concept, as shown 

in Fig. 2.3. The flow on a circuit could be negative if it flows opposite to the pre-defined 

direction.  We dismiss the flow under 90% LTE for post-contingency states, thus the 

severity value between [-0.9LTE, 0.9LTE] is zero. The severity value linearly increases if 

the flow is over 90% LTE and reaches 1 on LTE. If the flow is over LTE, the severe level is 

greater. Thus the curve between [LTE, STE] has lager slope than the one between [0.9LET, 

LTE]. Similarly, the curve between [STE, DAL] has lager slope than the one between [LTE, 

STE]. 

 

c1

1

Overload Severity

STELTE0.9LTE-STE -LTE -0.9LTE-DAL

c2

DAL

gl

0

 

Fig. 2.4. Overload severity function for post-contingency states 

 

    In Fig. 2.4, gl is the post-contingency circuit loading. Note that we do not use PR (as in 

Fig. 2.2) in the horizontal axis, for the purpose of better demonstrating the ATR concept. 

Parameters c1 and c2 are the corresponding values on the vertical axis. To ensure the 

convexity of the function, the following formulations should be satisfied: 
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                                         1 , ,
max 10 / 9

STE l LTE l
l

c P P   (2.15) 

                                       
1 , 1 , ,

2

, ,

( 1)
max

DAL l LTE l STE l

l
STE l LTE l

c P c P P
c

P P

    
  

  
 (2.16) 

 

2.3.4 Formulations of SCOPF, RBOPF and RB-SCOPF 

    The compact form of DC SCOPF could be formulated as follows: 

           0
min ( )f P  (2.17) 

         Subject to 

          
0

( ) 0h P   (2.18) 

          
0min max

( )g g P g   (2.19) 

          
0min max

( ) , 1,...,
k

g g P g k NC     (2.20) 

where P0 are the real power injections at each node. Index k denotes system state, while k=0 

represents the normal condition, and k>0 represents post-contingency conditions. Equation 

(2.17) optimizes an economic function f(P0) (e.g., supply offers less demand bids), (2.18) 

are the pre-contingency power flow equations, (2.19) are line loading constraints under 

normal (no contingency) conditions, and (2.20) are line loading constraints under each of 

NC contingencies. Under this preventive control model, the real power injections P0 do not 

change. 

The benchmark RBOPF [78] problem can be formulated as follows: 

 

           0
min ( )f P  (2.21) 
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         Subject to 

          
0

( ) 0h P   (2.22) 

          
0min max

( )g g P g   (2.23) 

          
0 0 max1

0 ( ( ),... ( ))
NC

Risk g P g P Risk   (2.24) 

 

where Riskmax is the limit of system security level. Equation (2.24) is the risk constraint 

described in (2.25).  

 0 0 01
0

( ( ),... ( )) Pr ( ( ))
NC

kNC k
k

Risk g P g P Sev g P


  (2.25) 

    All the other nomenclatures are the same as in (2.17)-(2.20). Note that the flow 

constraints for individual circuits at post-contingency are not considered in the RBOPF 

model. Instead, it restrains the system’s overall security level. 

The preventive RB-SCOPF problem combines the above two models together by 

introducing two coordination factors KC and KR, formulated as follows: 

 

           0
min ( )f P  (2.26) 

         Subject to 

          
0

( ) 0h P   (2.27) 

          
0min max

( )g g P g   (2.28) 

          
0min max

( ) , 1,...,
C Ck

K g g P K g k NC     (2.29) 

          
0 0 max1

0 ( ( ),... ( ))
RNC

Risk g P g P K Risk   (2.30) 
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In formulations (2.29)-(2.30), it is the choice of KC and KR, and the coordination between 

them, through which one may impose control over a tradeoff between security and economy 

and also a tradeoff between system risk and individual circuit risk: the higher KC and KR are, 

the more economic and less secure the system is; and increasing KC may decrease the 

security of individual circuit while decreasing KR may increase the security of the system, 

and vice versa. We may have different approaches that are appropriate under different 

situations, as discussed in what follows: 

 Highly secure mode (HSM): One may ensure that no control is performed which 

allows a post-contingency overload to occur. Setting KC =1 achieves this, and then 

one can induce lower levels of system risk by adjusting KR. This approach will 

never be more risky or more economic than the solution provided by SCOPF, but a 

given risk reduction, relative to that of the SCOPF solution, is achieved at 

maximum economic efficiency. 

 Economic-secure mode (ESM): Setting KC >1 allows individual circuit post-

contingency loadings in excess of the LTE ratings. It is possible to provide modest 

reductions in system risk simultaneous with modest improvements in economic 

efficiency by permitting relatively small post-contingency overloads. Based on the 

ATR concept, we may select KC such that 
maxC

K g  equals to the STE in ESM. 

 Highly economic mode (HEM): By permitting large post-contingency overloads, 

one may achieve larger reductions in system risk simultaneous with significant 

improvements in economic efficiency. The KC is selected such that
maxC

K g equals to 

the DAL. This approach should not be dismissed as overly-risky. In fact, this 

approach will yield significantly less risky operating points than the highly-secure 
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approach, an assertion that can be supported by assessing the different operating 

points using independent measures such as angular separation or cascading analysis, 

as shown in [68]. 

 

2.3.5 Transformation of severity function 

The deterministic overload severity function indicated in Fig. 2.2, either in continuous 

differentiable or in piece-wise linear approximation form, could be transferred into 

equivalent optimization expression. The basic idea is that the minimization of a function 

over a convex area should be on the boundary of that area. A simple example is shown as 

follows:  

   1 : 1Equivalentx Min x x    

The equivalent form of (2.14) is: 

max

max

min

Subject to

( / ) / ( 1),

0,

( / ) / (1 ).

l

l l l l l

l

l l l l l

Sev

Sev PL PL c c

Sev

Sev PL PL c c

  



  

 
(2.31) 

Since we try to control the system’s risk as a whole in both normal and contingency states, 

formulation (2.31) might greatly increase the number of constraints when the system is large 

and many contingencies are considered. However, if Benders decomposition is applied, the 

PLl  in the right hand side of (2.31) is known from the result of the master problem. Also 

note that at given PLl, only one of the three constraints in (2.31) is binding. These features 

make the problem easier to solve. Another benefit of using (2.31) is that there is no need to 

introduce integer variables when we treat the piecewise function as in (2.14). 
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2.4 Benders Decomposition Approach 

2.4.1 Two-layer Benders decomposition method 

Since the risk of a circuit is a function of the power flowing in it, we cannot compute the 

risk of the circuit until the dispatch result is known. Thus it is reasonable to divide the 

problem into two parts: the security-constrained optimal power flow (SCOPF) part without 

considering the risk and the risk control part based on the SCOPF scheduling result. 

Consequently, a two-layer Benders decomposition approach is proposed as follows: 

 At the external layer, given the operating point x0 obtained from the master risk 

problem, find new operating points xi that meet the constraint (2.30). 

 At the internal layer, solve the modified SCOPF problem (including the Benders 

cuts from external layer BD). The master problem at this layer is the traditional OPF 

problem. The subproblems are to check the feasibility of transmission security 

constraints under both normal and contingency states. The obtained generation 

scheduling, which is locally optimized result, is then sent to the external layer. 

The objective function is to minimize the operating cost f0 at normal state while ensuring 

the post-contingency flows and the system’s overall risk level without violation. The 

decision process is illustrated in Fig. 2.5. 
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Master OPF problem

Hourly Feasibility Check for 

first contingency

Contingency Feasibility Check

Hourly Feasibility Check for 

last contingency

Steady state Feasibility Check

Hourly Feasibility Check

feasibility 
cut

Master Risk Problem 

(Internal Layer)

Feasibility Check of 

Risk Sub-problem

Optimality Check 

of Risk 

Sub-problem
optimality

cut

Risk Sub-problem 

(External Layer)

feasibility 
cut

feasibility 
cut

feasibility 
cut

 

Fig. 2.5. RB-SCOPF problem with two-layer decomposition 

2.4.2 Formulation of the preventive RB-SCOPF problem 

As mentioned above, the objective of RB-SCOPF is to determine an hourly economic 

dispatch so as to minimize the operating cost of the system, while satisfying the prevailing 

constraints as follows: 

1) Power balance 

2) Hourly generation bids 

3) Maximum and minimum limit of unit output 

4) Reserve requirement of the system 

5) Transmission flow limits in normal & contingency states 

6) Limit on system’s overall risk level 

The objective function will be minimizing the bidding-based operation cost, as follows: 

, ,

1 1

Min
iNSNG

i j i j

i j

s P
 

  (2.32) 

where NG is the number of generation units. NSi is the number of price bidding segments for 

unit i. si,j is the jth segment of bidding price for unit i. Pi,j is the real power output of unit i 

according to the jth segment bidding price.  
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    Traditional SCOPF constraints include the system’s power balance (2.33) and real power 

generation limits by segments (2.34): 

,

1 1 1

iNSNG ND

i j Di Loss

i j i

P P P
  

    (2.33) 

, , ,i j i j i jP P P   
(2.34) 

where ND is the number of load bus. PDi is the load at bus i. PLoss is the loss of the system. 

,i jP and ,i jP  are the lower and upper limits of real power output, respectively. 

The circuit flows, expressed as linear functions of node power injections multiplied by 

power transfer distribution factors (PTDF), are enforced to within certain limits, as shown in 

(2.35) and (2.36): 

0 0 0 0 0

,max , , ,max

1 1

PTDF - PTDF
NG ND

l l l i i l j Dj l

i j

PL PL P P PL
 

         

1,2,...,l NL
 

(2.35) 

,max , , ,max

1 1

PTDF - PTDF
NG ND

k k k k k

C l l l i i l j Dj C l

i j

K PL PL P P K PL
 

      
 

 

1,2,..., ; 1,2,...,l NL k NC   (2.36) 

where k

lPL is the real power flow of lth circuit at kth contingency, NL is the number of 

circuits, ,PTDFk

l i is the power transfer distribution factor of bus i to circuit l for the kth 

contingency. Equation (2.35) denotes the normal state power flow limits, and (2.36) denotes 

the post-contingency states power flow limits. By using different values of KC, we could 

identify various operating conditions for the system. 

The DC-OPF can be expressed using balance of injection at each node, or, equivalently, it 
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can be expressed as a balance of generation and load for the entire system, while satisfying 

circuit power flow equations. We have chosen the latter approach, as was done in [79], with 

the system balance computed via equation (2.18) and the circuit power flows computed via 

equations (2.20) and (2.21) (the result enables computation of the injection at each node). 

The advantage of this approach is we can express the circuit power flow with the product of 

shift factors and generator outputs, which facilitates the processing of the feasibility check at 

the internal layer and improves the computational efficiency.  

Many authors have researched on AC OPF model [80]-[83], which is more accurate, 

nevertheless more difficult to solve, especially for large systems. None of the ISOs in the 

USA are using ACOPF in their real-time electricity markets, (see page 35 of [34]). Our use 

of DCOPF is consistent with industry practice. ISO-NE is using DC OPF, with AC 

feasibility check. We are coordinating with ISO-NE and planning to use AC feasibility 

check in the next step. 

The risk constraints are 

           , 0, 1,2,..., ; 0,1,2,...,l kSev l NL k NC    (2.37) 

           , ,max( / ) / ( 1),k k

l k l l l lSev PL PL c c   1,2,..., ; 0,1,2,...,l NL k NC 

 

(2.38) 

           , ,max( / ) / (1 ),k k

l k l l l lSev PL PL c c   1,2,..., ; 0,1,2,...,l NL k NC 

 

(2.39) 

           ,

1 1

NC NL

k l k R max

k l

Pr Sev K Risk
 

  
 

(2.40) 

where (2.37)-(2.39) are the risk constraints for individual circuits, and (2.40) is the risk 

constraints for the whole system.  The summation on the left side of (2.40) indicates that the 

risk of the system couples with every circuit at normal and contingency states. 
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2.4.3 Decomposition Strategy for the internal layer 

    Benders decomposition is a widely used decomposition technique to solve large-scale 

optimization problems. For the first-layer decomposition of RB-SCOPF, assuming that x1 

represents the unit output vector P at normal state, and y1k represents the flow on the circuit 

at kth contingency, we can write it into the following standard Benders decomposition form 

(k =0 denotes the variables and parameters at normal state): 

          Min T

1
xc  (2.41) 

          Subject to 

          1 1 1xA b  (2.42) 

          1 1 1 1 1 , 0,1,2,...,k k k k k NC  x yE F h  
(2.43) 

where (41) represents the cost function (2.32). Equation (2.42) represents constraints (2.33) 

and (2.34) as well as the Benders cuts from the external layer. Equation (2.43) represents 

constraints (2.35) and (2.36). Thus, the master problem becomes: 

 1 1 1 1Min :T x xc A b  (2.44) 

The corresponding kth feasibility-check subproblem based on the optimal solution x1
*
 from 

(2.44) is: 

*

1

*

1 1 1 1 1

( ) Min

. .

0,1,2,...,

T

k

k k k k k

w

s t

k NC



  



x 1

F y x

s

s h E   (2.45) 

where 1 is the vector of ones, s is slack variables used to check the violation of constraints, 

and
k is the simplex multiplier vector of inequality constraints in (2.45). wk(x1

*
)  > 0 means 
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there exists violation in the kth subproblem. To eliminate the violation, the following 

Benders cut is added to the master problem: 

* *

1 1 1 1 1
( ) ( ) ( ) 0T

k k k k
   x x x xw w E  (2.46) 

    There is no optimality cut in the first-layer decomposition, because the optimal function 

in (2.41) is not interrelated with y1k, thus the subproblems are always optimal with objective 

values 0 as long as they are feasible. The first-layer optimization is inherently a traditional 

SCOPF problem, except that risk cut from the second layer is added to it at each iteration of 

the external loop, as shown in Fig. 2.5. The successful application of using Benders 

decomposition approach to solve SCOPF has been demonstrated in previous literatures [85]-

[87]. Since this paper focuses on dealing with the risk constraints, we use DC model in the 

internal layer; however, an AC network model can also be used, as shown in Fig. 2.2 where 

an AC feasibility check can be applied in the “hourly feasibility check” block of the internal 

loop. The severity function is linear, thus the external loop algorithm remains the same. 

 

2.4.4 Decomposition strategy for the external layer 

Assume x2 represents the states of unit output P in normal state and the post-contingency 

circuit flow PL, y2 represents the states of overload severity at both normal and contingency 

conditions. We can write the problem into the following Benders decomposition form: 

 

    
2 2Min T Tx yc d  (2.47) 

            Subject to 

    2 2 2xA b  (2.48) 
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    2 2 2 2 2 x yE F h  (2.49) 

 

where (2.47) is the modified objective function: the first part is the cost function in (2.32), 

and the second part, detailed in (2.50),  is the sum of severity in the objective function of 

(2.31). Equation (2.48) represents constraints in (2.33)-(2.36) as well as the Benders cuts 

from subproblems, as shown in (2.60) and (2.61) from the following section. Equation (2.49) 

represents constraints in (2.37)-(2.40).  

2 ,

0 1

NC NL
T

l k

k l

Sev
 

yd  (2.50) 

The master problem of Benders decomposition is: 

 2 2 2 2
ˆMin :T u x xc A b  (2.51) 

where û represents an optimistic estimate of
*

2

T
yd in (2.47). It is a decision variable in the 

master problem. In theory, it could be any real value. However, in this problem the severity 

function is greater than or equal to zero, thus we constrain ˆ 0u  . In the first iteration, there 

may be no constraints keeping it from approaching 0, thus we let
*û be 0 at the first iteration 

while minimizing the other constrained variables. The corresponding subproblem associated 

with the optimal solution x2
*
 of master problem (2.51) is 

*

2 2

*

2 2 2 2 2

( ) Min

. .

T

s t

 

 

x y

F y x

d

h E
 (2.52) 

    Note that in (2.45) there are (NC+1) subproblems and each is an independent 

optimization with the number of constraints and decision variables no higher than a single 

OPF problem—denoted as O(1). Thus the optimization complexity of the first-layer is of 

dimension (NC+1) × O(1). However, there is only one subproblem in (2.52) because we 
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intend to control the system’s overall risk level in both normal and contingency conditions. 

The size of problem (2.52) is extremely large when the system is large, and its optimization 

complexity is of dimension O(NC+1).  

There are three cases that may occur when solving (2.52): 1) infeasible, under which a 

feasibility cut need to be added to the master in (2.51); 2) has optimal solution
*

2y but with

* *

2
ˆ( ) u x , where 

*û is 0 at the first iteration and the optimal value in (2.51) at the 

following iterations, then 
*û is an unrealistic estimate. In order to make û be more realistic, 

we need to send an optimality cut to the master (2.51); 3) has optimal solution
*

2y and with

* *

2
ˆ( ) u x , then

*û is realistic. The algorithm stops and the current solution is optimal. The 

key is how to obtain the feasibility cut and optimality cut, which are discussed as follows. 

Feasibility cut.  First we need to ascertain if (2.52) is feasible or not. Since its size is large, 

it is not suitable to solve it directly. The inequality constraint in (2.52) is in fact expressions 

(2.37)-(2.40). Note that at given 
*

2x in (2.52), i.e., given *k

lPL , only one constraint will hold 

in (2.37)-(2.39). Let’s define 

, ,max ,max
ˆ max{( / ) / ( 1),( / ) / (1 ),0}k k k k

l k l l l l l l l lSev PL PL c c PL PL c c      

1,2,..., ; 0,1,2,...,l NL k NC   (2.53) 

Then the full expression of (2.52) becomes: 

            
,

1 1

Min
NC NL

l k

k l

Sev
 

  (2.54) 

           Subject to 

            , , ,
ˆ ,l k l k l kSev Sev z  (2.55) 
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            , 1

1 1

,
NC NL

k l k R max

k l

Pr Sev K Risk
 

   z  (2.56) 

1,2,..., ; 0,1,2,...,l NL k NC    

where z1 and zl,k are the simplex multiplier vectors of constraints (2.55) and (2.56).  It is 

proved in the Appendix that if there is: 

,

1 1

ˆ 0
NC NL

k l k R max

k l

Pr Sev K Risk
 

     (2.57) 

then problem (2.54)-(2.56) is optimal with solution
*

,l kSev   
,

ˆ{ }, ,l kSev l k . Otherwise, the 

problem is infeasible and there exists an extreme ray for the dual to (2.54)-(2.56) 

1 , ,

1 1

1 ,

1 ,

ˆMax z

. . z 1

z 0, 0

1,2,..., ; 0,1,2,...,

NC NL

R max l k l k

k l

k l k

l k

K Risk Sev

s t Pr

l NL k NC

 

 

 

 

 

 z

z

z
 

(2.58) 

    

An extreme ray to (2.58), denoted as vector 1 ,{ , }l k z z can be obtained by solving the 

following optimization (2.59): 

 

1 , ,

1 1

1 ,

1 ,

ˆMax z

. . z 0

1 z 0, 0 1

1,2,..., ; 0,1,2,...,

NC NL

R max l k l k

k l

k l k

l k

K Risk Sev

s t Pr

l NL k NC

 

   

   

      

 

 z

z

z

 (2.59) 
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It is proved in the Appendix that problem (2.48) is optimal with solution {
*

1z = -1, 
,

*

l k
z = 

Prk,  l,k} and the optimal objective value is just the left hand side of (2.57) and is greater 

than zero here. Now, we can get the feasibility cut as shown in (2.60): 

T *

2 2 2( ) 0effective effective  x zh E  (2.60) 

where vector 
*z = [-1, Prk],  l,k. 2

effective
h and 2

effective
E are the coefficients of the effective 

constraints regarding to the severity function. They are subsets of h2 and E2 in (2.52). 

Optimality cut. If (2.52) is optimal, and thus its dual (2.58) is optimal but with the value of 

objective function
*

2
ˆ( ) u x , an optimal cut need to be added to the master (2.51). It is 

shown in the Appendix that problem (2.58) is optimal with solution {z1
*
=0, zl,k

*
= 1 , l,k }. 

Then, the optimality cut is 

T *

2 2 2
ˆ( )effective effective u x zh E  (2.61) 

where vector 
*

z = [0, 1, …, 1]. 

    It is interesting to see that by using the approach above, we can solve all the optimization 

problems algebraically, rather than using simplex or another optimization method at the 

external layer. This greatly increases the computing speed of the RB-SCOPF. 

 

2.4.5 Iterative Procedure 

Based on the above analysis, we can obtain a two layer (or nested) Benders decomposition 

technique to solve the full RB-SCOPF. The iterative algorithm is as follows. 

1) Start with an approximation of
*û which is a lower bound to û . 
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2) Solve the master problem in the internal layer. The results are OPF schedule without 

transmission security constraints while ensuring the Benders cuts, if any, from the 

external loop are satisfied. 

3) With the schedule in 2), check the circuit security violations in subproblems (2.45). 

If any violations occur, the feasibility cuts in (2.46) are added to the master, go to 

step 2). Else, no overload violations occurs (at both normal and post-contingency 

conditions) for the schedule. Go to step 4). 

4) Obtain updated 
*û by solving LP (2.51) given the scheduled result from 3). 

5) Based on the schedule result from 3), check if the system’s overall risk level is 

within limit. If not, problem (2.52) is infeasible.  Generate a feasibility cut as in 

(2.60) and go to step 2). Else, go to step 6). 

6) Solve problem (2.52), and obtain the objective function value
*

2( ) x . If
* *

2
ˆ( ) u x , 

then
*û is an unrealistic estimate of û . Generate an optimality cut as in (2.61), go to 

step 2). Else, 
*û is realistic, and the current solution is optimal. Stop. 
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Fig. 2.6. Iteration procedure for RB-SCOPF using two-layer Benders decomposition 
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The above iteration procedure is shown in Fig. 2.6. It is important to note that SCOPF and 

RBOPF are both special cases of RB-SCOPF. The algorithm used in the first layer could be 

used to solve SCOPF, while the algorithm used in the second layer could solve RBOPF. 

 

2.5 Numerical Results 

    In this section we present two representative numerical examples by the proposed 

approaches: a 9-bus test system [88] and the ISO New England real system. The former is a 

simple system that we chose to test the correctness of our algorithm. Since the system is 

small, we can solve the optimization problem as a whole by simultaneously imposing all 

post-contingency and risk constraints. The result is then used to compare with that obtained 

by our proposed two-layer decomposition approach.  The latter is a real system from ISO 

New England, and we provide the results obtained from our software here along with a 

comparison of some security indices to identify the merits of RB-SCOPF over SCOPF. 

 

2.5.1 The Nine-bus Test System 

The diagram of the nine-bus test system is shown in Fig. 2.7. The line impedances are 

indicated in the diagram with per unit values. The loads at bus 5, 6, and 8 are 125 MW, 90 

MW and 100 MW, respectively. For simplicity, we assume the generators only provide one-

segment bidding prices, which are $20, $40 and $80/MWh for generator 1, 2 and 3, 

respectively. The economic maximum outputs of these generators are 150, 200, and 150 

MW, respectively. The parameters of the transmission lines and transformers, including the 

impedances, resistances and MW limits are shown in Table 2.1. Two N-1 contingencies are 
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considered, i.e., the outages of circuits 4-5 and 6-9. Assume their outage probabilities are 

both 0.01 at certain time t, thus the probability of normal state is 0.98. 

 

1

2
3

4

5 6

7
8 9

 X14 = 0.0576

 X45 = 0.085  X46 = 0.092

 X69 = 0.17 X57 = 0.161

 X27 = 0.0625  X78 = 0.072  X89 = 0.1008
 X39 = 0.0586

100 MW

125 MW 90 MW

G1

G2 G3

 

Fig. 2.7. The Nine-bus test system 

 

    We assume this is a lossless network while the loss is constant during the computation. In 

order to estimate the losses, a base case power flow is solved at first. The loss offset is -4.46 

MW calculated against reference bus 1. The maximum risk Rmax is set as the risk level for 

SCOPF, which is 0.9 in this example.  We use the algorithm in section 2.4 to solve the RB-

SCOPF. At first the HSM case (KC=1, KR = 0.5) is solved. To initialize the external loop 

optimization, we set the guess of 
*û be -∞ at beginning. Then the algorithm comes to the 

internal loop with the estimated
*û . A base case OPF (no contingency constraints) is run as 

master problem of the first-layer decomposition. At this operation point, line 6-4 will lead to 

violation at contingency 1, thus a feasibility cut is added to the master. Contingency 2 do not 

lead to violations. A new base-case operating point was then calculated and the results were 

sent to subproblems. After two iterations in the internal loop, all the violations are alleviated 
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then the results were sent to the external loop. Given the generator dispatch results from the 

internal loop, we first check the feasibility of risk. The risk subproblem is feasible, thus no 

feasibility cut is needed. Its optimal value is 1.4375, greater than the estimated
*û from the 

internal loop (which is -∞), thus an optimality cut is sent back, and the algorithm comes to 

the internal loop again. All the above cuts are added to the master. We get a newer estimate 

of 
*û with value 1.4375. Then we come to the external loop and solve the risk subproblem 

again. The optimal function value is 1.4375, the same with the estimated
*û . Thus the 

algorithm stops. 

    Since the system is small, we can solve the RB-SCOPF problem without decomposition. 

We found the result is the same with that obtained by the above approach, which identify 

the correctness of our proposed method. The RB-SCOPF result, including the HSM model, 

the ESM model (
CK =1.05, KR = 0.75) and the HEM model (

CK =1.20, KR = 0.5) are shown 

in Table 2.2 and Table 2.3. Table 2.4 lists the circuits with flow over 90 percent of their 

limits at both normal and post-contingencies for SCOPF, RBOPF and various models of 

RB-SCOPF. The following provides discussions about the results: 

 Compared with SCOPF, RBOPF has less cost and less risk, but may cause high 

overloads for post-contingency states. For example, the flow on circuit 6-4 is 

112.5% of its limit at contingency 1. 

 HSM of RB-SCOPF is the most secure model but with the highest cost. Similar to 

SCOPF, it does not allow overload for post-contingency states, but its risk is only 

half. 

 The cost of ESM model is close to SCOPF, but the risk is only 50 percent. It 

decreases the power flow of circuit 7-8 at normal state from 100% limit to 93.75% 
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limit, while it permits relatively small post-contingency overloads (5 percent) of 

circuit 6-4 at contingency 1.  

Table 2.1 Parameters of the nine bus system 

Circuits 1-4 2-7 9-3 5-4 6-4 7-5 9-6 7-8 8-9 

Impedance (p.u.) 0.0576 0.0625 0.0586 0.085 0.092 0.161 0.17 0.072 0.1008 

Resistance (p.u.) 0 0 0 0.01 0.017 0.032 0.039 0.0085 0.0119 

MW limits (MW) 150 200 100 100 120 150 100 100 100 

 

Table 2.2  Comparison of Risk and Cost for Nine Bus system 

Constraints SCOPF RBOPF 

RB-SCOPF 

HSM 

(KC=1, KR = 0.5) 

ESM 

(KC =1.05, KR = 0.5) 

HEM 

(KC =1.20, KR = 0.5) 

Risk 0.9 0.45 0.45 0.45 0.45 

Cost ($) 11377.8 11172.5 11679.3 11476.6 11172.5 

 

Table 2.3 Comparison of Generator Outputs 

Options G1 (WM) G2 (WM) G3 (WM) 

SCOPF  136.46 161.60 21.40 

RBOPF  146.76 142.88 29.82 

RB-

SCOPF  

HSM 136.46 154.83 28.17 

ESM 143.06 148.14 28.26 

EESM 146.76 142.88 29.82 

 

Table 2.4 Circuits with flow over 90% limit  

Options States of circuit flow over 90% limit 

SCOPF  
100% limit,  circuit 7-8 at normal state 

100% limit,  circuit 6-4 at contingency 1 

RBOPF  
92.81% limit,  circuit 7-8 at normal state 

112.5% limit,  circuit 6-4 at contingency 1 

RB-SCOPF  

HSM 
94.38% limit,  circuit 7-8 at normal state 

100% limit,  circuit 6-4 at contingency 1 

ESM 
93.75% limit,  circuit 7-8 at normal state 

105% limit,  circuit 6-4 at contingency 1 

HEM 
92.81%% limit,  circuit 7-8 at normal state 

112.5% limit,  circuit 6-4 at contingency 1 
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    The result of HEM model is the same as the result from RBOPF. This happens because 

RBOPF is a special case to RB-SCOPF with CK large. In this example when CK is greater 

than 1.125 the dispatch result will not change. 

 

2.5.2 The ISO New England System 

The original network data from ISO New England has 12,300 buses, 13,500 circuits and 

1136 contingencies. After consolidating part of the zero impedance branches (ZBRs), the 

system has 2351 buses and 3189 circuits. We only consider the first 250 contingencies in 

this example. However, the conclusion should be the same if all the contingencies are 

considered. The generator bidding data we used are from a winter day in 2009. Wind turbine 

units are not included since they do not have bidding curves. The number of bidding units is 

almost 400.  

For the RB-SCOPF problem in this case, there are 802,150 decision variables and 

4,002,196 constraints. Solving the problem directly will cause unacceptable computing time 

and extreme PC memory requirements. The time required for solving is estimated. In our 

experiment, the base case problem could be solved in about 2 seconds. As from [89], if there 

are O(L) bit numbers, the linear programming algorithm will require O(n
3.5

L) arithmetic 

operations, where n is the number of decision variables and L is the number of bits for the 

input. Based on this conclusion, the time need to solve our problem directly will be about 

1.8 years. However, it is more efficiency to compute the RB-SCOPF if our proposed 

approach is used. 
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Table 2.5 Iterations of the Algorithm 

iter. loop type no. of cuts time (s) 

1-6 Internal 179 OPF feasibility cuts generated 522.45 

7-29 External 23 risk feasibility cuts generated 3643.14 

30-31 External 2 risk optimality cuts generated 300.74 

32 Internal No cut generated < l 

33 External No cut generated < 1 

 

Table 2.6 Binding Contingencies at Successive Internal Iterations 

iter. binding contingencies 

1 

7,9,11,12,14,15,17,20,21,22,23,24,25,27,28,29,31,32,33,34,35,36,37,38,39,40,42,4

8,49,51,52,53,54,60,61,63,65,66,67,68,70,71,72,79,80,83,84,85,86,87,90,91,92,93,

94,95,98,99,101,105,109,113,114,118,119,120,122,125,126,128,129,133,134,135,

137,138,140,141,142,146,147,148,149,150,151,153,154,157,158,159,160,161,165,

167,169,171,174,175,179,180,181,183,184,186,187,188,189,190,191,193,198,199,

200,201,202,205,208,209,212,213,215,218,220,223,226,227,228,231,232,233,236,

238,239,241,242,244,246,247,249,250 

2 
7,12,14,15,21,29,33,36,40,49,61,67,84,98,126,138,149,150, 

154,198,201,205,220,226,233 

3 15,29,138,233 

4 15,29,138,233 

5 29,138 

6 15,29,138 

 

    First we solve the HSM case (KC=1, KR = 0.5). The cost for the base case OPF is 

$571530. The base case dispatch result is then sent to subproblems to check if there are 

violations in the first-layer decomposition. Table 2.5 summarizes the procedure of iterations. 

The algorithm stops at 33 iterations. In the first 6 iterations, the algorithm runs in the 

internal loop. Totally 179 feasibility cuts are generated and sent back to the master. Table 

2.6 lists the binding contingencies. During iteration 7-29, the algorithm runs in the external 

loop. The risk subproblem is infeasible thus one feasibility cut is generated every iteration. 

After 23 feasibility cuts are sent back to the master of the second-layer, the risk subproblem 
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becomes feasible. But the estimated *

2( ) x is greater than
*û in part D of section 2.4.4, so an 

optimality cut is generated. Two optimality cuts are sent to the master in iteration 30 and 31. 

Then the algorithm comes to the internal loop again. No violation occurs at this time, so the 

algorithm comes to the external loop. Neither feasibility cut nor optimality cut is generated. 

At this time, there is * *

2
ˆ| ( ) |u  x , where is the set error. The algorithm stops. Fig. 2.8 

indicates the changes of operation cost and the estimated severity
*û in each step. 

 

Table 2.7 Results for the ISO New England System 

Constraints SCOPF RBOPF 

RB-SCOPF 

HSM 

(KC=1, KR = 

0.5) 

ESM 

( CK =1.05, KR = 

0.5) 

HEM 

( CK =1.20, KR = 

0.5) 

Risk 18.2690 9.1345 9.1345 9.1345 9.1345 

Cost ($/hr) 684642.50 605407.32 728899.10 610611.54 605542.08 

ASI 24.5466 24.0768 24.5458 24.0824 24.0848 

CEI 850.02 80.14 254.83 197.42 219.65 

 

 

Fig. 2.8 The change of cost and estimated severity with iterations 
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The solving procedure for ESM ( CK =1.05, KR = 0.5) and HEM ( CK =1.20, KR = 0.5) is 

similar. Table 2.7 compares the results of SCOPF, RBOPF and various cases of RB-SCOPF 

for the ISO New England system. Two new indices, i.e. ASI (Angular Separation Index) and 

CEI (Cascading Expectation Index) are included in the table. Their meanings are shortly 

explained as follows. 

Angular separation index is used to measure the stress of power flow in the system based 

on the fact that the risk of angular instability is higher if high angular separations exist over 

many circuits. The formulation is 

 
0

( ) ( )
N

i ASI i

i

ASI Pr E Sev E


                                                  (2.62) 

where Ei expresses the ith event, Pr ( • ) is the probability of an event, and 

: 0.5

( ) sin

j

ASI i j

j

Sev E





                                                   (2.63) 

where SevASI ( • ) is the angular separation severity, j is the angular separation of circuit j 

with power flow over 90 percent of its overload limit. 

 

Table 2.8 Comparison of Computing Results for ISO-NE System 

Options 
Iterations to 

converge 

No. of circuits with flow over 90% TTL 

normal state contig. states 

SCOPF 7 33 8183 

RBOPF 43 26 6411 

 HSM 33 28 6819 

RBSCOPF ESM 49 22 5388 

 EESM 26 23 5678 
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Cascading expectation index is a product of cascading overload probability and cascading 

overload severity. The overload probability of a circuit is a function of its ultimate power 

flow and the change of power flow during cascading trip. The overload severity is the 

number of tripped circuits in a cascading overload evaluation.  

In Table 2.8 we control the risk level of RBOPF and RBSCOPF as half of SCOPF.  The 

results show that the corresponding costs of RBOPF and RB-SCOPF are lower than SCOPF 

except the HSM model. And also, SCOPF has higher values on ASI and CEI, thus has 

worse long-time performance on security according to our proposed index. 

    Table 2.8 compares the results on the number of iterations and number of circuits with 

flow over 90 percent TTL at both normal and contingency states. It is indicated that the 

computing time of RBOPF and RB-SCOPF are 4-7 times than that of SCOPF. The number 

of severe loading (greater than 90% TTL) circuits is reduced in RBOPF and SCOPF model. 

 

2.6 Conclusion 

This chapter provides a new methodology to solve the preventive Risk-based security-

constrained optimal power flow problems. A two-stage Benders Decomposition strategy 

was proposed. At the first stage, the algorithm iterates within the internal loop that has been 

decomposed into an unconstrained economic dispatch and separate post-contingency 

analysis with generation rescheduling to eliminate overload violations. At the second stage, 

the algorithm iterates in the external loop that is comprised of a “base-case” risk problem 

and risk violation check subproblems. To facilitate the decomposition procedure, a new 

expression of severity function is proposed. 
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The algorithm has been tested the ISO New England’s real operational system. The results 

indicate that RB-SCOPF could improve the system’s performance in terms of both security 

and costs compared with traditional SCOPF. 

   In order to implement the proposed algorithm, the future research might include the 

following topics: 

 Apply the proposed method to solve corrective risk-based security-constrained 

optimal power flow. 

 How to choose appropriate KC and KR so that desired tradeoff   between the system 

security and the economics is obtained. This will require research on the sensitivity 

of the objective function to KC and KR . 

  To show that a system with less loaded high stress lines and more loaded low stress 

lines is more secure than the system with more loaded high stress and less loaded 

low stress lines. This is to show that the dispatch outcomes based on RB-SCOPF 

will have higher steady state security margins. 

 Consider the risk of wind fluctuation, which is to be embedded into the OPF model. 

 

Appendix 

A. Proof of conclusion for (2.57) 

    Proof: Recall that the KKT condition for LP max { : , 0}Tc x Ax b x  is: there exists a vector 

yR such that the following constraints hold 

0 0
T

yb Ax

x A y c

   
    

   
                                              (2.A.1) 

where “  ” means the two vectors are perpendicular. 
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    For LP (2.54) ~ (2.56), define set 

 ,
ˆ , 1,2,..., 0,1,2,...,l ktS Sev l NL k NC     .                 (2.A.2) 

a) If equation (2.57) holds, then S satisfies both equation (2.55) and equation (2.56). 

Consequently, S is a feasible solution set for LP (2.54)~ (2.56). In addition, it is obvious 

from (2.53) that ,
ˆ 0l kSev  , 1,2,..., 0,1,2,...,l NL k NC    . Plug in solution S into the KKT 

condition (A.1), we get that the LP problem is optimal with solution S only if there exists a 

vector , ( 1)[ , ]T

l k lky y y  such that the following constraints hold: 

, ,

,

, ( 1)

1 1

, ( 1)

,

ˆ ˆ1

ˆ0 0

1
ˆ

l k l k

l k
NC NL

R max k l k lk

k l

l kt k lk

l k

Sev Sev
y

K Risk Pr Sev y

y Pr y
Sev



 



  
  
  

      
        

 

 

          

(2.A.3) 

It is not hard to find that  , ( 1)1 0l k lky y  ，  satisfies the above conditions, thus S is the 

optimal solution of LP (2.54) ~ (2.56). 

b) If equation (2.57) does not hold, i.e. ,

1 1

0
NC NL

R max k l kt

k l

K Risk Pr Sev
 

    , then (A.3) does not 

hold. The KKT conditions are not satisfied. So LP (2.54) ~ (2.56) is not optimal. It is easy to 

see that this problem cannot be unbounded. Thus it is infeasible, and has an extreme ray for 

its dual in (2.58). 

B. Proof of the optimal solution of (2.59) 

    In (2.59), there are: 

, 1l k kPr   z z , ,k l                                           (2.A.4) 

The objective function 
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1 , ,

1 1

1 , 1

1 1

, 1

1 1

ˆ

ˆ

ˆ( )

NC NL

R max l k l k

k l

NC NL

R max k l k

k l

NC NL

R max k l k

k l

f K Risk Sev

K Risk Pr Sev

K Risk Pr Sev

 

 

 

    

    

   



 

 

z z

z z

z

                        (2.A.5) 

Since 

,

1 1

ˆ 0
NC NL

R max k l k

k l

K Risk Pr Sev
 

                                  (2.A.6) 

the objective function reach its maximum value 

*

,

1 1

ˆ
NC NL

k l k R max

k l

f Pr Sev K Risk
 

                            (2.A.7) 

when{
*

1z = -1, 
,

*

l k
z = Prk , l,k}. 

C.  Proof of the optimal solution of (2.58) 

    If (2.58) is optimal, equation (2.57) holds. Since 1 0z , in (2.58) there is 

, 11 zl k kPr z                                                  (2.A.8) 

The objective function 

1 , ,

1 1

1 , 1

1 1

, 1 ,

1 1 1 1

,

1 1

ˆz

ˆz (1 z )

ˆ ˆ( )z

ˆ

NC NL

R max l k l k

k l

NC NL

R max l k k

k l

NC NL NC NL

R max k l k l k

k l k l

NC NL

l k

k l

f K Risk Sev

K Risk Sev Pr

K Risk Pr Sev Sev

Sev

 

 

   

 

  

   

   







  



z

          

(2.A.9) 

The equality holds when {z1
*
=0, zl,k

*
= 1, l,k }. 

  



www.manaraa.com

64 
 

 

 

CHAPTER 3. SOLVING CORRECTIVE RISK-BASED SECURITY-

CONSTRAINED OPF WITH LAGRANGIAN RELAXATION AND BENDERS 

DECOMPOSITION 

 

3.1 Introduction 

    The risk-based security-constrained optimal power flow (RB-SCOPF) [90] is an 

extension to the currently widely-used SCOPF model ([91]-[93]) in an effort to enhance 

both security and economics of bulk power systems. It considers, in addition to classic 

constraints in both normal state and predefined “N-1” contingency states, the risk 

constraints related with both single circuits (type I risk constraints) and the whole system 

(type II risk constraints). The objective of RB-SCOPF is to maximize the surplus of the real-

time market. In the case of fixed, inelastic demand, this objective is equivalent to 

minimizing the offer-based generation costs at normal state without violating the pre-

defined N-1 security criteria and the required risk level of the entire system. Similar to 

SCOPF model, the RB-SCOPF has been formulated under two models: preventive and 

corrective, referred to as PRB-SCOPF and CRB-SCOPF, respectively. Their major 

difference lies in that the control variables are allowed to adjust during a short time interval 

after the contingency occurs in the latter. In this chapter we focus on how to solve the CRB-

SCOPF. Similar to PRB-SCOPF, the following two characteristics of CRB-SCOPF make 

the solving procedure difficult: 

 Combinatorial nature — the risk constraint is a function of state variables in both 

normal and all the contingency states, since we intend to control the system’s 

overall risk level. The state-coupling (type II) risk constraints could be relaxed in 
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the objective function to solve the de-coupled problem. 

 High dimensionality — the CRB-SCOPF model simultaneously imposes all post-

contingency constraints. If the system is large and many contingencies are 

considered, it would cause prohibitive CPU time and memory requirements to 

solve the problem directly.  

In addition, the CRB-SCOPF has a different feature over PRB-SCOPF that we have to use 

LP algorithm to compute the subproblems, while for PRB-SCOPF the subproblems could be 

solved algebraically, as we did in Chapter 2. Hence, to compute CRB-SCOPF is more 

difficult than to compute PRB-SCOPF. To handle the above difficulties, we present an 

effective approach to solve CRB-SCOPF problem. The Lagrangain relaxation (LR) 

algorithm ([94], [95]) is applied to the original problem to relax complicating (or linking) 

constraints to the objective function. Based on this dual relaxation, the original large-scale 

optimization problem, which consist of both complicating variables and complicating 

constraints, could be decomposed into a tractable subproblem that consists only of the 

former. The relaxed subproblem, called the Lagrangian dual problem (DP), could be solved 

by the Benders decomposition (BD) approach. The master problem in DP is a ‘base-case’ 

economic dispatch problem associated with corresponding type I risk constraints; and the 

subproblems are independent contingency analysis with generation rescheduling to 

eliminate constraint violations. The procedure is shown in Fig. 3.1. 

 



www.manaraa.com

66 
 

 

 

Original Problem Dual Problem

Master Problem

(Base-case generation dispatch)

Subproblems

(Network Security and Risk 

Level Check)

Generation 

schedule
Cuts

Large-scale CRB-

SCOPF problem with 

complicating variables 

and constraints

Lagrangian 

Relaxation

Optimal 

solutions Benders decomposition

 

Fig. 3.1. Decomposition structure of the CRB-SCOPF problem 

 

3.2 Lagrangian relaxation decomposition method 

3.2.1 Introduction 

    The Lagrangian relaxation (LR) is a widely used technique to solving optimization 

problems with complex constraints and special structures. General form of LR 

decomposition problem (Primal Problem, P) is as follows: 

min ( )

. . ( ) 0

( ) 0

( ) 0

( ) 0

f x
x

s t a x

b x

c x

d x













 

(3.1) 

where ( )f x  is the objective function, four constraints ( ) an
a x  , ( ) bn

b x  , ( ) cn
c x 

and ( ) dn
d x  . na, nb, nc,and nd are respectively the size of the constraints. c(x) and d(x) are 

complicating constraints, i.e., constraints if been relaxed, the problem (1) will be easy to 

solve.  and  are the Lagrangian multiplier of c(x) and d(x).  

        The Lagrangian function (LF) is defined as [96]: 
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( , , ) ( ) ( ) ( )T TL x f x c x d x       (3.2) 

where complicating constraints c(x) and d(x) have been moved to the objective function 

with associated multipliers. Under regularity and convexity assumptions, the resulting Dual 

Function (DF) is defined as: 

( , ) min ( , , ) ( ) ( ) ( )

. . ( ) 0

( ) 0

T TL x f x c x d x
x

s t a x

b x

         





 (3.3) 

        In general, the dual function is concave and non-differentiable [96]. The Dual Problem 

(DP) is then defined as: 

max ( , )
,

. . 0s t

unconstrained

  
 





  
(3.4) 

        The above LR decomposition procedure is quite attractive if the dual function (3) is 

easy to solve with given
* and * . In this case, the problem to be solved is called the 

relaxed primal problem (RPP) for given
* and * , as follows: 

* * * *min ( , , ) ( ) ( ) ( )

. . ( ) 0

( ) 0

T TL x f x c x d x
x

s t a x

b x

     




 

(3.5) 

 

        Based on the above analysis, we can obtain the general algorithm of LR method to 

solve problem (3.1): 

a) Guess an initial value of 0 and 0 . 



www.manaraa.com

68 
 

 

 

b) Let 0old  and 0old  , solve (3.5). 

c) Update  and  based on the result in b), get new and new . General updating method 

includes Subgradient and Cutting Plane Method. 

d)  If 
new old

new old

 


 

   
    

      

,stop. Else, go to b). 

        In what follows we will discuss the relationship between the primal problem and the 

dual problem. Because in the dual function (DF) the constraints ( ) 0c x  and ( ) 0d x  have 

been eliminated from the primal problem (P), the optimal solution obtained from the 

Lagrangian dual problem (DP) may not be feasible to the primal problem. In such case, the 

Lagrangian relaxation technique is still attractive because it provides the lower bound of the 

primal problem, as the following theorems [96]: 

        Theorem 1 (Weak Duality Theorem): Suppose the optimal solution to the primal 

problem [P] is x
*
, and the optimal objective value of P denotes as f(x

*
). For any , 0   , 

there exists: *( , ) ( )f x    . 

        Theorem 2: The dual function ( , )   is a concave function. 

        Suppose x
* 

is the minimizer or the primal problem, and ( * *,  ) is the maximizer for 

the dual problem. Reference [95] proved that under convexity assumptions, there exists 

* * *( ) ( , )f x     (3.6) 

    For nonconvex case, the optimal objective value of the dual problem provides a lower 

bound to the primal problem as the above weak duality theorem says. The difference of the 

optimal objective function values between the primal and dual problems is called the 

duality gap. In most of engineering and science problems, the duality gap is relatively 

small. 
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        A simple example with linear programing is provided to demonstrate the procedure of 

the LR decomposition method. 

        For the LP problem (3.7) 

1 2

1

1

1 2 1

2 2

min 2

. , 1

0

2 0

0

x x

s t x

x

x x

x









 

   

 

 

(3.7) 

there are four constraints. We want to relax the last two constraints, and 1 and 2 are the 

Lagrangian multipliers for them. It is easy to obtain that the optimal solution is * *

1 2 1x x  , 

the optimal objective function value is 3. 

        The dual function is: 

1 2 1 2 1 1 2 2 2

1

1

2 ( 2) ( )

. . 1

0

( , ) min x x x x x

s t x

x

          



 



 
(3.8) 

 

or equally 

1 2 1 1 1 2 2 1

1

1

) (2 ) 2

. . 1

0

( , ) min (1 x x

s t x

x

         



 

 

 
(3.9) 

From (3.9) we can see that there is no constrains for x2. For any given *

1 and *

2 , the 

objective function is always  ! This will make the LR method fail. However, from the 

KKT condition we have 
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1 2

2

2 0
L

x
 


   

  
(3.10) 

where 1 1 1 2 2 1) (2 ) 2(1L x x        . 

        If (3.10) is considered, then the dual problem becomes: 

1 2

1 1 1

1 2
,

1 1

1

2

1 2

) 2 0

0 2 0

2 0

(1 1
max ( , )

1

. . 0

0

if

if

s t

 

  

 

 

  





  


 

  

 







 

(3.11) 

0 1 2

1

2

3

1

1 2( , ) 

 

Fig 3.2. The expression of dual problem 

 

        From Fig. 3.2, we can see that the problem (3.11) is optimal when 1 2  and 2 0  . The 

optimal objective value is 3. The corresponding optimal solutions * *

1 2 1x x  . It is obvious 

that the solution obtained from LR method is the same with the results solved directly from 

the primal problem. 
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3.2.2 Application of LR in solving CRB-SCOPF 

As an efficient technology, Lagrangian relaxation has been used successfully in many 

power system cases to relax the complicating constraints. For example, reference [97] 

proposed a framework to carry out the multi-area coordinated optimal power flow problem, 

in which the whole system is decomposed into independent optimal dispatch areas by LR. 

Reference [98] applies LR to the optimal restoration problem of distribution systems after a 

blackout occurs. Reference [99] uses LR approach to solve the dynamic multi-period 

economic dispatch problem for large-scale power systems. In [100], LR is applied to 

decompose the long-term security-constrained unit commitment (SCUC) into successive 

short term SCUC problems. The major difficulty of applying LR approach lies in the 

multiplier updating procedure. In general, there are four methods to update the Lagrangian 

multiplier: Subgradient method, Cutting Plane method, bundle method and dynamically 

constrained cutting plane method [95], [101].  In this chapter, the cutting plane algorithm is 

adopted since it provides good results according to our test. On the other hand, since the 

reference [86] was published, Benders decomposition has been used as an effective tool to 

solve various CSCOPF and other related problems such as power transmission network 

design, unit commitment, ATC calculation and optimal reactive power planning, etc. [102] - 

[106]. The major concern of applying Benders is that the algorithm may not converge to 

either a global or a local optimal solution if the feasible region is not convex [95], [86]. In 

this chapter, the results are obtained based on DC power flow model, thus the convexity is 

guaranteed. The proposed approach converges successfully with decent performance. 
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3.3 Description of CRB-SCOPF Model 

The CRB-SCOPF problem can be formulated in compact form as follows:  

 

                                    
0Min )

NC

f
0 0

0 0
x ,...,x ,u

(x ,u  (3.12) 

                          0. . ( , ) 0, 0,...,k ks t k NC g x u  (3.13) 

                                   
0 0 0( , ) max

0h x u h  (3.14) 

                                  ( , ) , 1,...,max

k k k C kK k NC  h x u h  (3.15) 

                                  0 , 1,...,k k k NC   u u u  (3.16) 

                                 max
0 ( ,..., )

R
Risk K Risk 

1 NC
g g  (3.17) 

 

where f0 is the objective function, vector x represents the state variables (i.e., real and 

imaginary part of bus voltages), vector u represents control variables (such as the voltage 

and active power on generators, transformer ratios, phase shifter angle, etc.), k represents the 

system configuration (k = 0 corresponds to the normal state of the system, while k = 1, 2, …, 

NC corresponds to the post-contingency states), NC represents the total number of 

contingencies,  gk (resp. hk) is the set of equality (resp. inequality) constraints for the kth 

configuration of the system, max

kh represents the limit of the inequality constraints at state k, 

ku represents the vector of maximal allowed variation of control variables between the 

normal state and the kth post-contingency state, ( )Risk represents the system’s overall risk 

level, 
maxRisk is the system’s maximal allowed risk level, KC and KR are coordination factors 

used to impose control over a tradeoff between security and economy. 



www.manaraa.com

73 
 

 

 

The objective in (3.12) intends to minimize the system’s costs at the normal state. 

Constraints (3.13)-(3.15) impose the feasibility of the system at pre-contingency and post-

contingency states. Equality constraints (3.13) are power flow balance equations, while the 

inequality constraints (3.14) and (3.15) denote the operational and physical limits of the 

system. Constraint (3.17) requires that the system’s overall risk level be within a pre-defined 

value, which can be set by using the SCOPF result as a benchmark. We deal with the risk 

constraint (3.17) by the method similar in Chapter 2. Similar to the classic SCOPF model, 

the inequalities (3.16) are “linking” constraints between the normal and post-contingency 

states, aimed at allowing adjustment of the control variables after the contingency occurs. 

    It can be shown that the traditional CSCOPF is just a special case of the CRB-SCOPF 

model, only by imposing KC = 1 and KR  = +∞. 

 

3.4 Mathematical Framework to Solve CRB-SCOPF 

3.4.1 CRB-SCOPF Formulation 

As discussed in section 3.3, the objective of CRB-SCOPF is to determine a real-time 

generator schedule for minimizing the system’s operating cost without violating the 

prevailing constraints. Hence, the objective function, as a detailed form of (3.12), is 

formulated as: 

0 ,0

1

Min
NG

i i

i

c P


  (3.18) 

where NG is the total number of generators, NL is the total number of circuits, ci0 is the 

generation cost of unit i, Pi,0 is the generation output of unit i at normal state.  

Generation constraints include the system power balance for normal and post-contingency 

states (3.19) and the operating reserve requirements at normal state (3.20), 
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, , ,

1 1

, 0,1,...,
NG ND

i k i k Loss k

i i

P PD P k NC
 

     (3.19) 

,

1

NG

O i

i

R Rev


  (3.20) 

where Pi,k is the generation output of unit i at kth state, PDi,k is the demand at load bus i at 

kth state, PLoss,k is the system’s loss at kth state, ND is the total load bus number, RO,i is the 

operating reserve of unit i,  and Rev is the system reserve requirement. Equation (3.19) 

corresponds to (3.13) in section 3.3. 

Real power generation limit (3.21), 

 

min max

, , , , 0,1,..., ; 1,2,...,i k i k i kP P P k NC i NG     (3.21) 

 

where
min

,i kP (
max

,i kP ) is the lower (upper) limit of real power generate of unit i at state k. 

In real-time CRB-SCOPF problem, we check DC network security constraints during 

operation as (3.22) and (3.23) (AC network constraints will be examined further in a 

subsequent chapter). 

 

max max

,0 ,0 ,0 , 1,2,...,l l lPL PL PL l NL     (3.22) 

max max

, , , , 1,2,..., ; 1,2,...,C l k l k C l kK PL PL K PL l NL k NC      (3.23) 

 

where PLl,0 (PLl,k) is the real power flow on circuit l at normal (kth post-contingency) state, 

max

,0lPL ( max

,l kPL ) is the maximum transmission limit of circuit l at normal (kth post-contingency) 
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state, NL is the total number of system circuits. The expressions of
,0lPL and

,l kPL are shown 

in equations (3.35) and (3.36) of chapter 2. Equations (3.22) and (3.23) correspond to (3.14) 

and (3.15), respectively.  

In (3.23) there is a factor KC to relax the post-contingency circuit limits. Similar to chapter 

2, three different operational models for CRB-SCOPF are proposed, according to what value 

KC is imposed: highly secure model (HSM), economic-secure model (ESM), and highly 

economic model (HEM), where KC was chosen as 1, 1.05 and 1.20, respectively. We do not 

allow circuit overflows at normal state, thus there is no multipliers on the limits in (3.22). 

Generator output corrective limits at post-contingency,  

 

,0 , , 1,2,...,i i k kP P P k NC     (3.24) 

, ,0 , 1,2,...,i k i kP P P k NC     (3.25) 

 

where
kP is the allowed variation of generation outputs between normal and the kth post-

contingency state. Equation (3.24) and (3.25) corresponds to (3.16) in section 3.3. 

The risk constraints, by using the equivalent transmission as shown in equation (3.31) of 

chapter 2 and letting cl = 0.9, could be formulated as (3.26)-(3.29): 

 

, 0, 1,2,..., ; 0,1,2,...,l kSev l NL k NC    (3.26) 

max

, , ,10 ( / 0.9) , 1,2,..., ; 0,1,2,...,l k l k l kSev PL PL l NL k NC      (3.27) 

max

, , ,10 ( / 0.9) , 1,2,..., ; 0,1,2,...,l k l k l kSev PL PL l NL k NC       (3.28) 
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,

1 1

NC NL

k l k R max

k l

Pr Sev K Risk
 

    (3.29) 

 

where Sevl,k is the severity of circuit l at the kth post-contingency, Riskmax is set as the risk 

level of SCOPF. Equations (3.26) – (3.29) corresponds to (3.17) in section 3.3. 

    Constraints (3.26)-(3.27) are associated with single circuit (type I risk constraints), while 

constraint (3.29) is associated with the whole system (type II risk constraints). Constraint 

(3.29) is the complicating constraint that links the normal and all the post-contingency states. 

 

3.4.2 Lagrangian Relaxation 

The problem CRB-SCOPF (3.18)-(3.29) is with both complicating variables (equations 

(3.24)-(3.25)) and complicating constraint (equation (3.29)). Largrangian relaxation 

technique is applied for the solution of (3.18)-(3.29). The coupling constraint (3.29) is 

relaxed and embedded into the objective function by using a non-negative Lagrangian 

multiplier (  ). Then the original problem (3.18)-(3.29) could be formulated in terms of 

Largrangian dual function as shown in (3.30) subjecting to constraints (3.19)-(3.28), 

 

0 ,0 ,

1 1 1

0 ,0 ,

1 1 1

( )

Min[ ( )]

Min[ + ]

NG NC NL

i i k l k R max

i k l

NG NC NL

R max i i k l k

i k l

LR

c P Pr Sev K Risk

K Risk c P Pr Sev





 

  

  

   

   

  

  

 

(3.30) 

 

which is a concave function [95]. 

The relaxation of coupling constraint (3.29) makes the problem to be solved includes only 
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complicating variables, thus transforms the primal problem into an easier-to-solve dual 

problem. It can be shown that the optimal value of the Lagrangian relaxation problem 

(denoted as LRV) should always be less than or equal to that of the primal problem (denoted 

as PV) for two reasons: 1) the feasible region of the Lagrangian relaxation problem 

encompasses that of the primal problem, and 2) for any non-negative Lagrangian multiplier

 , the objective function value of the Lagrangian relaxation problem (3.18) is always 

smaller than that of the primal problem (3.30) if inequality (3.29) is satisfied. This means, 

the LRV is always a lower bound to PV. We need to get the largest lower bound over all the 

possible Lagrangian multipliers, as shown in (3.31), 

 

0
Max ( )DV LR





  (3.31) 

 

which is called the Lagrangian dual problem, DV denotes its optimal value subjective to 

constraint 0  . 

Our aim is to solve the dual problem quickly through an iterative fashion. The algorithm 

for solving the dual problem proceeds as follows. 

1) Initialization. Set the iteration number v = 1. Initialize the Lagrangian dual variable 

( ) 0v  . The
0 is chosen such that the solution of dual problem given 

0 is a 

feasible solution to the primal problem, i.e. if we solve (3.30) under
0 and 

substitute the solution to the primal problem, formulation (3.19)-(3.29) should be 

satisfied. Set the initial lower bound LB
(v-1)

 = - ∞. 

2) Solve the relaxed primal problem, i.e. formulation (3.30) subjecting to constraints 

(3.19)-(3.28) and get the minimizer (denote as x
(v)

)  and the objective function value 
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at the minizer (denote as LRV
(v)

). Update the lower bound to PV, i.e., LB
(v-1)

 ← 

LRV
(v) 

if LRV
(v) 

> LB
(v-1)

. 

3) Update the multipliers using any of the commonly used methods stated in the 

introduction.  For different problems, these methods can converge to the optimal 

solution with various speeds. We need to choose a proper method depending on 

what problem to solve. If possible, update also the upper bound of the objective 

function. 

4) Check the convergence of the algorithm. If the relative difference of multiplier 

vectors between two successive iterations is lower than a pre-specified threshold, i.e. 

( 1) ( ) ( )/v v v      , the algorithm stops. Otherwise set v+1 ← v and go to step 

1). 

Some widely used methods in step 3) such as subgradient method (SG) and cutting plane 

method (CP) have been applied successfully in many cases. However, the two algorithms 

differ in many ways, like the assumptions, the convergence speeds, and the search directions. 

Their formulations and features are compared as follows. 

Subgradient Method: The subgradient method solves the Lagrangian dual problem 

heuristically. It is an iterative approach in which the Lagrangian multipliers are adjusted to 

find the best (or nearly the best) lower bound. The general procedure at iteration v is 

 

( 1) ( ) ( ) ( )max(0, )v v v vg       (3.32) 

* ( )

( )

2
( )

( )v

v

v

LRV LRV

g




 
  (3.33) 
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where ( )v is the step size, 
*LRV is the estimated upper bound of Lagrangian relaxed function, 

 is the convergence factor with value between 0 and 2, and ( )vg is the subgradient of 

Lagrangian function (3.30) at
( )v , as shown in formulation (3.34) 

 

( ) ( )

,

1 1

( )
( )

NC NL
v v

k l k R max

k l

LR
g Pr Sev K Risk



  


   


   

(3.34) 

 

where ( )

,

v

l k
Sev is the solution of decision variables at kth iteration. 

    The SG method is simple to implement and with small computational burden. However, 

its convergence speed is slow due to the oscillating feature as a consequence of the non-

differentiability of the dual function [95]. Besides, in order to apply the rule specified in 

(3.33) it is require to know
*LRV as a priori, which is hard to obtain for large-scale CRB-

SCOPF problem.   

Cutting Plane method: In each iteration of cutting plane method, the multiplier is updated 

by solving the following linear programming problem 

 

( ) ( )

Max

. . ,

0, 1,2,...,

k k

z

s t z LRV u g

u k v

  

 

 (3.35) 

 

where u is a scalar, g
(k)

 is the same as in (3.34), z is an unconstrained decision variable that 

estimates the currently best objective function value. 
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The linear programming (3.35) is a relaxed dual problem that approximates the actual dual 

problem with the iteration grows. The number of constraints increases with the number of 

iterations, thus may cause high computational burden if the size of multiplier vector is large. 

However, we only relax one constraint in the CRB-SCOPF problem. Hence only one 

Lagrangian multiplier is needed.  The LP (3.35) could be solved very fast with current 

technologies even if the iteration number is high. In the numerical example part of this 

chapter, the cutting plane method is applied to update multipliers. 

Another important issue in the algorithm to solve the dual problem comes from step 2). If 

the system is small, the Lagrangian dual problem could be solved as a whole with fast 

algorithm. For large systems, however, the Lagrangian dual problem is a large-scale 

optimization problem with liking variables. Benders decomposition will be used to solve the 

dual problem, as shown in what follows. 

 

3.4.3 Benders decomposition to solve the dual subproblem 

To solve the Lagrangian dual problem directly will cause prohibitive CPU computing time 

and memories if the system is large and many contingencies are considered. The Benders 

decomposition is an efficient method to solve the DP, which contains linking variables 

between normal state and contingency states.  In Benders approach, the original DP, i.e. 

formulation (3.30) with constraints (3.19)-(3.28), is decomposed into a master problem and 

a successive of slave subproblems that interact iteratively.   

Without the loss of generality, the DP is expressed here in compact form as shown in 

(3.36)-(3.41), where the first term (as a constant for given ) in (3.30) is not included in the 

objective function: 



www.manaraa.com

81 
 

 

 

                             
0 0 0 0

1

Min
NC

T T T

k k

k

c x d y d y


   (3.36) 

                      
0 0 0

. .s t A x b  (3.37) 

                             
0 0 0 0 0

E x F y r   (3.38) 

                             
k k k

A x b  (3.39) 

                             
k k k k k

E x F y r   (3.40) 

                             
0 k k

x x    (3.41) 

                             
For all k = 1, 2, …, NC  

where x0 and xk (y0 and yk) denote the state &control variables (the severity decision 

variables) at normal and the kth contingency state, respectively. c0 is vector of the 

generation cost coefficient, vector dk is shown in (3.42) 

 

1,

2,

,

T

k

k

k

NL k

Sev

Sev
d

Sev



 
 
  
 
 
  

, for all k = 0, 1, …, NC (3.42) 

 

and the inequality (3.37) denotes constraint (3.19)-(3.23) when k = 0, where the equality 

(3.19) is transferred to two inequality constraints; equation (3.39) denotes constraints (3.19), 

& (3.21)-(3.23) when k ≥ 1; equation (3.38) (or (3.40))denotes the risk constraints (3.26)-

(3.28) when k = 0 (or k ≥ 1);  equation (3.41) denotes the coupling constraints (3.24)-(3.25). 

Based on the above formulations, the master problem is formulated as (3.43), which is a 

base-case OPF problem associated with the type I risk constraints at normal state: 
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0 0 0 0

1

0 0 0

0 0 0 0 0

ˆMin

. .

NC
T T

k

k

c x d y

s t A x b

E x F y r

and Benders cuts from subproblems




 



 



 (3.43) 

 

where ˆ
k (k = 1,…, NC) represents the kth optimistic estimate of

T

k k
d y . It is an 

unconstrained decision variable in the master. 

The kth subproblem (k = 1, 2,…, NC) is 

 

                                    = Min T

k k k
d y  (3.44) 

                                      . .
k k k

s t A x b  (3.45) 

                                              
k k k k k

E x F y r   (3.46) 

                                              *

0 k k
x x    (3.47) 

 

where
*

0
x is the optimal solution of

0
x from (3.43). 

First we need to check the feasibility of optimization problem (3.44)-(3.47). Note that the 

range of yk is [0, +∞), which means we could always find large enough yk to satisfy 

inequality (3.46). Thus, constraint (3.46) could be eliminated in the feasibility-check 

procedure. We formulate the following subproblem to check the feasibility of (3.44)-(3.47) 
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*

0 1 2

1 1

*

0 2

( ) = Min

. .

T T

k

k k k k

k k k

w x

s t A x b

x x






  

 

   

1 1s s

s

s

 (3.48) 

 

where 1 is the vector of ones, s1 ≥ 0 and s2 ≥ 0 are vectors of slack variables used to check 

the violation of constraints. 
1k

 and
k




are the associated Lagrangian multipliers of 

corresponding inequalities. From problem (3.42), we can conclude that the problem (3.44)-

(3.47) is feasible if
*

0
( ) = 0

k
w x , and infeasible if 

*

0
( ) > 0

k
w x . 

A feasibility cut as shown in (3.49) needs to be added to the master if problem (3.44)-

(3.47) is infeasible 

* *

0 0 0
( ) + ( ) 0

k k
w x x x


   (3.49) 

    Otherwise, if problem (3.44)-(3.47) has optimal solution (
*

k
x ,

*

k
y ) but with

*ˆ
k k
  , where

*ˆ
k

 is the optimal solution of ˆ
k

 in (3.43), then
*ˆ
k

 is an unrealistic estimate. We need to send 

back an optimality cut to the master problem such that ˆ
k

 is more realistic. The optimality 

cut is shown in (3.50) 

 

* *

0 0 0
ˆ( ) + ( )

k k k
w x x x 


   (3.50) 

     

    Finally, if problem (3.44)-(3.47) has optimal solution with the objective function value

*ˆ
k k
  , then no Benders cut is generated. The algorithm stops, and the current solution (

*

k
x

,
*

k
y ) is the optimal solution to the original problem. 
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Fig. 3.3. Iterative procedure for CRB-SCOPF using Lagrangian relaxation and Benders 

decomposition 
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3.4.4 Iterative Procedure 

  Based on the above analysis, we can get an iterative approach to solve CRB-SCOPF 

problem, as shown in Fig. 3.3. If the size of the system is small, we can solve the 

Lagrangian dual problem directly by LP (for DC power flow) or NLP (for AC power flow) 

algorithms without using Benders decomposition. This is because Benders decomposition 

may spend rather a long time to iterate between the master and the subproblems, especially 

when the solution is close to optimal. However, if the system is large and many 

contingencies are considered, it will cause prohibitive time to solve the dual problem as a 

whole. Benders decomposition is more efficient and recommended to use at this time. 

    The Benders decomposition algorithm terminates when no Benders cuts are generated 

after solving the feasibility-check and optimality-check subproblems. The Lagrangian 

relaxation algorithm terminates when the multiplier difference between two consecutive 

iterations is below a pre-specified threshold. 

 

3.5 Illustrative Examples 

The proposed algorithm to solve CRB-SCOPF problem was tested on two representative 

numerical examples: the IEEE 30-bus system and the ISO New England bulk system. The 

former is a small system that only Lagrangian relaxation algorithm is used. The dual 

problem was solved by LP algorithms directly. The latter is ISO New England’s real power 

system. Benders decomposition is applied to improve efficiency. 

The generation costs and risk level are compared between CRB-SCOPF and CSCOPF, for 

the purpose of demonstrate the benefits of the former in terms of both economy and security. 
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However, the computational burden of CRB-SCOPF is higher than CSCOPF. 

The results reported here are tested using MATLAB R2010a and CPLEX 12.1, on a 

3.16GHz Intel Core 2 CPU and 4Gb RAM PC. 

 

3.5.1 The IEEE 30-bus system 

    The IEEE 30 bus system is from [60], and its single line diagram is shown in Fig. 3.4. 

The system is composed of 30 buses, 41 branches, 6 thermal units and 20 loads. To better 

apply the proposed algorithm, some changes are made to the original data as follows: the 

transmission limits of circuit 2-6, 12-13, 23-24 are modified to 20MW, 40MW, and 

7.47MW, respectively; the transmission limits of circuits 6-8 and 21-22 are reduced to 90% 

of the original ones. Besides, the generation costs of original data are with quadratic form. 

We use 3-segament piecewise linear curve to approximate the quadratic cost curve in this 

example. Let Pmin and Pmax denote the minimal and maximum outputs of a generator, 

respectively. Then the intervals of the 3-segements are [Pmin, (Pmax - Pmin) / 3], [(Pmax - Pmin) 

/ 3, 2×(Pmax - Pmin) / 3], and [2×(Pmax - Pmin) / 3, Pmax], respectively. Plotted figure indicates 

that the error between the original quadratic curve and the approximated linear curve is 

small. 

 



www.manaraa.com

87 
 

 

 

1 3 4

2 5

6

7

8

11
9

101213

15

14 16

17

20

1918

23 24

21

22

26 25

27 28

30

29

 

Fig. 3.4 Single line diagram of the IEEE 30-bus system 

 

We assume that the system is lossless, and bus 1 is the reference bus. In general there are 

36 N-1 post-contingencies be defined, i.e. every circuit could be lost thus contribute to a 

contingency except for those lines whose outage may lead to islanding. One fact lies in that 

the probabilities of the contingencies are related with the length of the line — the longer the 

line is, the higher probability the outage may happen. However, the line lengths are not 

available in the data, so we use the impedance data to replace them. We set the probability 

for the benchmark impedance, i.e. the average impedance of all the circuits, to be 0.002. The 

probabilities for the 36 contingencies are calculated by 0.002 times the ratio of the circuit 

impedance to the benchmark impedance. 
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As regards to the coupling constraints between the normal and post-contingency states, we 

assume that every generator is able to reschedule ±7% of its active power physical range 

following the loss of a circuit. Based on these assumptions, the CSCOPF is solved at first 

for the system. The minimum generation cost is $116207.5 without violating the N-1 

contingency criteria.  The risk of the system, as an index computed form the CSCOPF result, 

is 0.115. If we set the parameter KR = 0.5, then the risk index for the CRB-SCOPF should be 

0.575, which means we set the risk level of CRB-SCOPF be a half to CSCOPF. 

 

Table 3.1 Evolution of the LR Algorithm Using a Cutting Plane Multiplier Updating 

Method for Various Cases 

 

approach iter.   ( )LR   Gen. costs time (s) 

HSM 

 

1 60000.0 125837.7 127977.9 

1.9817 

2 0 116230.1 116207.5 

3 10594.9 119410.6 117982.9 

4 58909.8 125874.9 121352.7 

5 58926.9 125876.1 125867.1 

ESM 

1 60000.0 101544.2 103608.7 

2.0595 

2 0 101984.2 101957.5 

3 1154.3 102846.8 102544.5 

4 3719.2 103485.3 103603.3 

5 3701.8 103484.7 103134.1 

6 3711.2 103485.4 103351.0 

7 3713.2 103485.6 103475.1 

HEM 

1 60000.0 100458.2 102240.1 

2.4289 

2 0 100368.2 100331.6 

3 1003.6 101270.3 100820.5 

4 3065.8 102122.2 102197.6 

5 2980.1 102120.1 101410.3 

6 2997.6 102123.9 101893.9 

7 3000.1 102124.1 102110.4 

CSCOPF - - - 116207.5 0.2071 

 

The CRB-SCOPF problem was solved using Lagrangian relaxation algorithm. Set initial 

Lagrangian multiplier
0
 = 6 × 10

4
. The cutting plane method was used for multiplier 

updating. For the HSM, ESM and EESM cases, the LR algorithm terminated after 5, 7, and 
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7 iterations, respectively. The evolutions of Lagrangian multiplier , dual function ( )LR  , 

and generation costs with iterations, and the CPU computing time with iterations for various 

cases are shown in Table 3.1. As a comparison, the generation costs and CPU time for 

CSCOPF are also listed in the Table. The risks and generation costs for CSCOPF and 

various cases of CRB-SCOPF are demonstrated in Table 3.2. 

 

Table 3.2 Comparison of Risk and Generation Costs for the IEEE 30-Bus System 

 

Constraints CSCOPF 

CRB-SCOPF 

HSM 

(KC=1, KR = 0.5) 

ESM 

(KC =1.05, KR = 0.5) 

HEM 

(KC =1.20, KR = 0.5) 

Risk 0.1150 0.0575 0.0575 0.0575 

Cost ($) 116207.5 125867.1 103475.1 102110.4 

 

Table 3.3 summarizes the circuits with flow over 90% of corresponding transmission 

limits. At normal state, the power flows on two circuits are over 90% limit: circuit 12-13 

with 100% limit, and circuit 21-22 with 91.83% limit. However, the CRB-SCOPF dispatch 

result will lead only one circuit, i.e. circuit 21-22,  with power flow over 90% limit. The 

transmission congestion on circuit 12-13 has been eliminated. At contingency states, 

CSCOPF will result in 58 circuits, while CRB-SCOPF will only cause 19, 21, 21 circuits for 

HHS, ESM and HEM models respectively, be over 90% transmission limits. The number of 

highly-loaded circuits for CRB-SCOPF has decreased significantly compared to CSCOPF. 

Nevertheless, there are 4 circuits be over 100% limit for ESM at contingency states: 1.0106 

limits of circuit 21-22 at 7th contingency, 1.05 limits of circuit 2-6 at 16th contingency, 1.05 

limits of circuit 23-24 at 30th contingency, and 1.05 limits of circuit 25-27 at 36th 

contingency. Similarly, 4 circuits be over 100% limit for EESM are: 1.0133 limits of circuit 
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21-22 at 7th contingency, 1.1013 limits of circuit 2-6 at 16th contingency, 1.2 limits of 

circuit 23-24 at 30th contingency, and 1.2 limits of circuit 25-27 at 36th contingency. 

 

Table 3.3 Summaries of Circuits with Flow Over 90% Limits for Various Cases 

 

approach 
no. of circuits with flow over 90% limit 

normal state contig. states 

CSCOPF 2 
circuit 12-13, 100% limit 

58 
circuit 21-22, 91.83% limit 

CRB- 

SCOPF 

HSM 1 circuit 21-22, 91.21% limit 18 

ESM 1 circuit 21-22, 90.73% limit 21 

HEM 1 circuit 21-22, 91.10% limit 21 

 

Based on the above results and analysis, some comments are presented as follows to 

describe the features of CRB-SCOPF:  

 The CRB-SCOPF is an improved real-time dispatch tool than the traditional 

CSCOPF model. It has very good merits, such as allowing the system operators to 

make a tradeoff between system security and economy, imposing the circuit power 

flows distributed more evenly, releasing the system’s transmission stress at normal 

state, etc. However, the computational burden of CRB-SCOPF is higher than that of 

CSCOPF. 

 We do not allow circuit overflows at normal state in various CRB-SCOPF models. 

Only a certain level overflows is allowed at contingency states, i.e. we allow 5% 

overflow for ESM, and 20% overflow for HEM. Note that the probability for a 

contingency to happen is very low, i.e. most of the time the system will remain at 

ordinary state. Thus it is very attractive to explore the application of ESM and HEM 
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model in real-time use, since they will bring significant improvements in economic 

efficiency. 

 The HSM is the most secure but most costly model, thus may lead to a relatively 

conservative operation status. Compared to CSCOPF model, it will always be less 

risky nevertheless less economic. Hence we suggest the HSM model be used only 

when there is high requirement on system’s security, such as heavy load, extreme 

weather conditions, or in the time when important public activities may be hold, etc. 

 

3.5.2 The ISO New England bulk System 

We obtain the raw data from ISO New England. The original network data consist of 

12,300 buses, 13,500 circuits and 1136 contingencies. In this example, only the first 250 

contingencies are considered to demonstrate the algorithm to solve CRB-SCOPF. However, 

the conclusion to be obtained should be the same if all the contingencies are considered. The 

bidding data of generation units we used are from a winter day in 2009 within the New 

England area.  Wind turbine units are not included since they currently do not have to 

provide bidding curves within ISO New England electricity market. The total number of 

bidding units is close to 400.  

 

Table 3.4 Summaries of CSCOPF Results for ISO New England Bulk System 

 

no. of Iterations no. of Benders cuts 

generated 

costs ($) on 

base-case 

costs ($) on 

CSCOPF  

CPU time 

(s) 

32 244 571530.3 616172.1 1855.6 
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Fig.3.5. The evolution of generation costs with the Lagrangian relaxation iterations for HSM, 

ESM, and HEM 

 

Table 3.5 CPU Time for Various Models 

 

Model HSM ESM HEM 

CPU time 5.2 hours 6.7 hours 6.9 hours 

 

At first we solve the CSCOPF model for ISO New England system. Note that CSCOPF is 

a special case of CRB-SCOPF in (3.1)-(3.6). We could use the Benders decomposition 

algorithm proposed in section III to solve CSCOPF by imposing the Lagrangian multiplier

0  . The CSCOPF problem has 322,456 decision variables and 2,246,041constraints 

based on DC power flow model. We assume that the generators could be rescheduled within 

±5% of their active power physical ranges at post-contingencies. The Benders 

decomposition algorithm for CSCOPF will iterates between a base-case economic dispatch 

and separate post-contingency analysis with generation rescheduling. The summary of 

CSCOPF algorithm is shown in Table IV. Based on the results, we can compute the risk of 

the system under CSCOPF model is Risk CSCOPF = 18.24, which is used as the benchmark 

risk level for CRB-SCOPF. If we set KR = 0.5, the maximum allowed risk value for CRB-

SCOPF will be 9.12, which is a half to that of CSCOPF. 
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The CRB-SCOPF model in this case consists of 990,395 decision variables and 5,347,798 

constraints. We use Lagrangian relaxation and Benders decomposition as shown in section 

3.3 to solve the large-scale programming. The evolution of generation costs with Lagrangian 

relaxation iterations for various models are shown in Fig. 3.5. For HSM model, the 

algorithm terminates at the fifth iteration by satisfying the convergence condition as shown 

in Fig. 3.3. Similarly, the ESM and HHSM models converge both at 9
 
iterations. The CPU 

time for various models is demonstrated in Table 3.5. The most computational part of the 

algorithm comes from using Benders decomposition to solve the LR dual problems. For a 

given Lagrangian multiplier , the BD algorithm iterates between a master problem and a 

bunch of subproblems. The initial multiplier is set as  = 100000. The first iteration in BD 

corresponds to an economic dispatch problem associated with corresponding type I risk 

constraints. At the resulting base-case operating point, contingency analysis was then 

carried out. Totally there are 31 contingencies lead to infeasibilities and 219 contingencies 

lead to feasibilities but with optimal objective value larger than ˆ
k (k = 1,…, NC) , i.e. the 

kth optimistic estimate of
T

k k
d y in(37). Thus 31 feasibility cuts and 219 optimality cuts are 

generated and returned to the master problem. A new master problem is solved again and 

the result is sent to the subproblems. This process terminates until reaching the stopping 

condition after 28 iterations. Hence we obtain the optimal solution of Lagrangian dual 

problem for the initial . Based on the result, a new multiplier is calculated by using cutting 

plane method.  The new dual problem is solved again. The algorithm stops until the 

multiplier difference between two successive iterations is lower than a pre-specified 

threshold. 
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Table 3.6 Comparison of Risk and Generation Costs for the ISO New England Bulk System 

 

Constraints CSCOPF 

CRB-SCOPF 

HSM 

(KC=1, KR = 0.5) 

ESM 

(KC =1.05, KR = 

0.5) 

HEM 

(KC =1.20, KR = 

0.5) 

Risk 18.24 9.12 9.12 9.12 

Cost ($) 616172.1 678654.3 608672.2 593676.6 

 

Table 3.7 Number of Circuits with Flow Over 90% Limits in Various Cases Based on ISO 

New England Bulk System 

 

approach 
no. of circuits with flow over 90% limit 

normal state contingency states 

CSCOPF 30 7201 

CRB-

SCOPF 

HSM 21 5876 

ESM 19 5019 

EESM 18 4963 

 

    We compared the generation costs and the system’s risk value for CSCOPF and various 

cases of CRB-SCOPF in TABLE 3.6. The numbers of circuits with flow over 90% limits in 

both normal and contingency states are shown in Table 3.7, classified by different 

approaches. From these results we could conclude that the bunch of CRB-SCOPF models is 

an efficient tool to manage the system’s risk while providing controls over a tradeoff 

between the economy and security of the system. 

3.6 Conclusion 

 

A mathematical framework to solve the corrective risk-based SCOPF model, which can 

take into account the system’s corrective capabilities after contingency has occurred, has 

been presented in this chapter. The original problem is with both combinatorial nature and 

high dimensionality, i.e. has both linking constraints and linking variables, and thus is very 
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difficult to be solved directly for large systems. The Lagraingian relaxation approach is 

applied to relax the linking constraints. The relaxed problem, called Lagrangian dual 

problem, contains only linking variables. We use Benders decomposition method to solve 

the dual problem. The algorithm allows iterations between a master problem, which consists 

of a base-case economic dispatch problem and the associated type I risk constraints, and a 

bunch of subproblems, which include feasibility-check and optimal-check procedure to 

eliminate the violating constraints. Based on the optimal solution of dual problem, an 

efficient cutting plane method is applied to update the Lagrangian multipliers. 

The algorithm has been tested on IEEE 30-bus system and the ISO New England’s bulk 

power system. The results indicate that CRB-SCOPF could manage the system risk while 

providing controls over the tradeoff between security and economy. 

    Future research on the application of the algorithm may include finding efficient 

techniques to solve the CRB-SCOPF problem with AC network constraints. To improve the 

computing efficiency, we can assume that the circuits with power flow below 45% percent 

of limits at normal state will never lead to overload severity at contingency states. Since the 

number of highly loaded circuits in real systems is small, this kind of assumption may 

greatly reduce the scale of optimization.  
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CHAPTER 4. ONLINE RISK-BASED SECURITY-CONSTRAINED ECONOMIC 

DISPATCH IN POWER SYSTEM AND MARKET OPERATION 

 

4.1 Introduction 

    Economic Dispatch (ED) is one of the most important tasks in the operation of power 

system. The objective of ED problem is to identify an hourly unit dispatch schedule that 

minimizes the generation costs based on existing unit commitment (UC) results. To ensure 

the operational security, a so-called “N-1” criterion [61], [107] has generally been applied in 

the ED procedure of today’s independent system operator (ISO) managed electricity 

markets, thus extending the ED to Security-Constrained Economic Dispatch (SCED). The 

SCED model allows the system be able to withstand the loss of a single component failure 

for all pre-defined possible contingency scenarios. In the past decades, the SCED approach 

has well-served the power industry to achieve economic operation with high security levels. 

However, this deterministic approach, without considering contingency probabilities, has a 

fundamental weakness in that the system security cannot be quantified. Under the SCED 

model, the power system could be either secure — if there are no violations of criteria, or 

insecure otherwise. The SCED cannot measure how secure the system is, or how insecure 

the system is. Hence, risk, a quantification of system health, is used as a constraint in the 

security-constrained economic dispatch [108]. The corresponding optimization problem is 

called Risk-based SCED (RB-SCED), which has the following characteristics: 1) It treats 

the post-contingencies with different occurring likelihoods, depending on the facility’s 

operational condition and weather condition in that area. This could avoid the occurring of 

unnecessarily low-risk, thus excessively high-cost operational conditions caused by SCED. 
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2) It intends to effectively manage both the system security level as well as security 

associated with individual circuit flows. The strength is that the overall system stress level 

can be controlled while simultaneously ensuring risk of post-contingency flows on 

individual circuits does not become excessive. 3) It is inherently a “balance-to-center” 

approach — by constraining the flow on highly-loaded circuits, it makes the distribution of 

flow on the system more even. 

    Risk based approach is an emerging new direction that is studied and beginning to be 

used in power system planning [2][3], maintenance [4][5] and online operation [6][7]. A 

risk-limiting dispatch under smart-grid environment was proposed in [8]. The formulation of 

risk, as well as several kinds of severity functions, was described in [36]. It was shown in 

[71] that the short-term contingency probability could be calculated based on information of 

weather, geography, voltage class, and historical data, and a statistic regression method for 

real-time contingency probability assessment was developed. 

To realize the application on real-time operation, the RB-SCED algorithm must be solved 

within a time scale of several minutes. To this end, we propose an efficient computation 

strategy by using Lagrangian relaxation and Benders decomposition. The simultaneous 

feasibility test (SFT) [52] is performed to further improve the computing efficiency. 

 

4.2 Contribution of this Chapter 

RB-SCED is a special form of RB-SCOPF. In this chapter, we focus on how to realize the 

RB-SCED algorithm in the industry. We only consider the preventive RB-SCED model, in 

accordance to the fact that all the ISOs in the USA are currently using preventive SCED for 

their real-time electricity market. In this chapter, we will develop the model and the 
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computational framework for preventive RB-SCED, and present the results based on the 

ISO New England electricity market and power system. 

In chapter 2 and chapter 3, we have developed the computational strategies to compute 

PRB-SCOPF and CRB-SCOPF, and tested them on the ISO-NE system. However, we just 

adopted a simplified network model in these chapters, as shown in the following: 

 The network was simplified as pure nodes and branches, while in real-world power 

system more complicated network model is used. 

 We used DC power flow to check if there exists overloading at post-contingency 

states. However, the industry adopts a better approach, called the contingency 

screening (CS) process, to check post-contingency violations:  at first DC power 

flow is used to do fast CS, then the post-contingency states are ranked based on 

their severities, finally a certain number (like ten) of most severe post-contingency 

states are chosen to be analyzed using AC power flow. By this way, more precise 

result could be guaranteed. 

 Constant loss model was used in chapter 2 and chapter 3. However, the industry is 

modeling system loss with more complicated models. This chapter will introduce 

and use these models. 

 There is need to make topology analysis for the work. For example, the industry 

software should be able to deal with islanding conditions. In addition, there exists 

large amount of zero-impedance branches (ZBRs) in the original data. The 

commercial software should be able to eliminate ZBRs and reorder the nodes. 

To deal with the above issues, we embed the proposed RB-SCED algorithm into 

commercial software TARA (Transmission Adequacy & Reliability Assessment), which has 
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been applied in ISO-NE and is able to model the system with more realistic tools. 

Another important issue deserves to be considered: in Chapter 3, we have developed a 

computational strategy to compute CRB-SCOPF by using Lagrangian relaxation and 

Benders decomposition. The question is if this method could be applied to solve preventive 

RB-SCED. The answer is positive. In fact, there are some interesting features if we apply 

the strategy in Chapter 3 to solve preventive RB-SCED. Recall that in Chapter 3 we have to 

solve individual LPs for each subproblem, but we can solve the subproblems of preventive 

RB-SCED algebraically, as will be shown in section 4.3 and 4.4. In this Chapter, we will 

use Lagrangian relaxation and Benders decomposition to solve PRB-SCED, rather than the 

method proposed in Chapter 2, for the following considerations: 

 It will be easier for ISO-NE to upgrade to CRB-SCED in the future. 

 It is beneficial to have another approach to solve PRB-SCOPF. 

 As shown in section 2.4.4, the risk-subproblem simultaneously considers all the 

post-contingency states, thus the sizes of matrix E2 and F2 in (2.52) of Chapter 2 are 

very large. The data stored in disk may need more time to be read, thus the 

computational efficiency is decreased. 

 

4.3 The RB-SCED Formulation 

The formulation of preventive RB-SCED is similar to the one in Chapter 2, but we make a 

few improvements here to adapt to the industry software. The RB-SCED problem is 

formulated as in equation (4.1) – (4.6). Compare to Chapter 2, the following changes are 

made: 

 Equation (4.3) is added to denote the inequality constraints of the system at normal 
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state, such as the upper and lower limits of unit outputs. 

 The effect of phase angle regulator (PAR) is considered, thus the form of power 

flow equations is changed, see (4.4) and (4.5). 

 New severity function has been used, as shown in Fig. 2.4 of Chapter 2. The 

expression of the severity function, as well as the equivalent LP transformation, is 

shown in the Appendix of this Chapter. 

 

                                           Min {
0

( )f P } (4.1) 

                                           Subject to: 

                                           
0

( ) 0h P   (4.2) 

                                           
0

( ) 0q P   (4.3) 

                                           
0

0 0max max
( , )

l
g g P PAR g    (4.4) 

                                           
0 0max max

( , )k

C l C
K g g P PAR K g    , k = 1, 2, … , NC (4.5) 

                                           
1 2

max
0 ( , ,..., )NC

l l l R
Risk g g g K Risk   (4.6) 

 

where
0

P is the vector of generation output at normal state, 
0

PAR is the vector of phase angle 

regulator, NC is the number of contingencies. KC and KR are coordination factors used to 

impose control over a tradeoff between security and economy. Equation (4.1) minimizes 

system production costs 
0

( )s P .  Equation (4.2) is the power balance equation. Equation (4.3) 

is the inequality constraints at normal state, including the unit output limits, phase angle 

regulator limits, and system spinning and operating reserve requirements. Equation (4.4) is 

the circuit loading constraints under normal condition, and (4.5) are circuit loading 
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constraints at each of the NC post-contingency states. Equation (4.6) is the system overall 

risk constraint, which is a function of circuit flows at post-contingency states. We do not 

consider the circuit overload risk at normal state. 

The circuit load flow in (4.4) and (4.5) could be formulated as follows 

 

, .

1 1

( )
ND NP

k k k

l i l i i j l j

i j

g sf P D sp PAR
 

   
,

1,2,..., , 0,1,2,...,l NL k NC     (4.7) 

 

Where ND is the number of nodes, NP is the number of PARs, NL is the number of circuits. 

k

l
h is the flow on lth circuit at contingency k, and k = 0 represents the normal state. 

,

k

i l
sf is the 

power shift factor of the ith node to lth circuit under state k, and
.

k

j l
sp is the shift factor of the 

jth PAR to lth circuit under state k. Pi and Di represent the unit real power output and 

demand at ith node, respectively.  

The risk constraint (4.6), if we utilize the equivalent LP optimization for the severity 

function as shown in Fig. 2.4 of Chapter 2, could be formulated as follows 

 

1 1

,
NC NL

k

k l R max

k l

Pr Sev K Risk
 

  
  

k

l
Sev subject to constraints (4.A.7)-(4.A.14) . (4.8) 

 

where Prk is the probability of state k. Equation (4.8) is the system overall risk constraints. 
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4.4 Computational Strategy to Solve RB-SCED 

    As discussed in Section 4.2, we use the computational strategy in Chapter 3 to solve the 

preventive RB-SCED. Equation (4.8) is a complicated constraint that linking decision 

variable at both normal and contingency states. At the first state, we apply the Lagrangian 

relaxation to relax (4.8) into the objective function, which is called the outer level of the 

algorithm. At the second stage, Benders decomposition was applied to solve the Lagrangian 

relaxation problem, which is called the inner level. 

 

4.4.1 The outer level: Lagrangian relaxation 

The Lagrangian relaxation to the original problem (4.1)-(4.6) is shown as follows 

 

                
0

1 1

( )

Min ( ) ( )

R

NC NL
k

R k l R max

k l

L

f P Pr Sev K Risk




 

 
    

 
 

 (4.9) 

                

Subject to  

                

Constraints (4.2)-(4.5) and (4.A.7)-(4.A.14) . 

 

where
R

 is the Lagrangian multiplier associated with constraint (4.6). 

The subgradient method, as introduced in Section 3.4.2, is applied to update the 

Lagrangian multiplier
R

 . The algorithm for the outer level is the same in Chapter 3. We do 

not elaborate it here, and just provide the procedure as below: 
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Outer level algorithm: Lagrangian relaxation 

 

1: Input:  , LRV
*
, KC, KR and Riskmax. 

2: Set v = 0. Given an initial guess to multiplier
0

R
 . 

3: while
( 1) ( )v v

R R
     , do 

4: Solve LR dual problem, with the algorithm from inner level. 

5: v ← v+1. 

6: ( 1)vg 
← 

( )vg  . 

7: 
( 1)v

R
 

←
( )v

R
 . 

8: end while 

 

4.4.2 The inner level: Benders decomposition 

The inner level algorithm is different from that in Chapter 3, thus we elaborate it in this 

section. The problem described in (4.9) associated with the corresponding constraints is a 

large scale LP problem. The Benders decomposition (BD) algorithm, which iterates between 

a master problem and a bunch of subproblems, is applied to solve the LP. For given solution 

results from the master, the kth subproblem may have 3 kinds of solutions: infeasible, 

optimal but with objective function value lower than a bound and optimal with objective 

function value greater than the bound. For the first case, we need to add a feasibility cut to 

the master. In our implementation, we use simultaneous feasibility test (SFT) procedure to 

generate transmission security constraints, which is inherently a faster way to generate 

Benders feasibility cut for large system. For the second case, we need to generate optimality 

cut and send it to the master. For the third case, no cut is generated. 
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     The kth (k =1, 2, …, NC) subproblem at post-contingency state is 

                                              
1

Min Pr
NL

k

R k l

l

Sev


  (4.10) 

                                                   Subject to: 

                                              
* *

, .

1 1

( )
ND NP

k k k

l i l i i j l j

i j

g sf P D sp PAR
 

     (4.11) 

                                              max

k k

l l
g g  (4.12) 

                                          and constraints (4.A.8)-(4.A.14). 

where 
*

i
P and *

j
PAR are solution from the master problem. 

In order to get the Benders cut, we need to write down the Lagrangian relaxation of the 

subproblem. Let k

l denotes the multiplier of (4.11), k

l  denotes the multiplier of (4.12), ,

k

l i

(i =1, 2, …, 7) denote the multiplier of constraints (4.A.8)-(4.A.14), respectively. Then the 

Lagrangian relaxation of problem (4.10) subject to (4.11), (4.12) and (4.A.8)-(4.A.14) is 

shown in (4.13). 

 

* *

, . max

1 1 1 1 1

,1 4 5 ,2 2 3 ,3 1 ,4

1 1 1 1

Pr [ ( ) ] ( )

( ) ( ) ( 9)

NL NL ND NP NL
k k k k k k k k

k R k l l l i l i i j l j l l l

l l i j l

NL NL NL
k k k k k k k k k k k

l l l l l l l l l l l l l l l l

l l l l

LR Sev g sf P D sp PAR g g

Sev a g a Sev a g a Sev a g Sev

  

   

    

   

      

         

    
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,5 1 ,6 2 3 ,7 4 5

1 1 1

( 9) ( ) ( )

NL

NL NL NL
k k k k k k k k k

l l l l l l l l l l l l l l

l l l

Sev a g Sev a g a Sev a g a  
  

        



  

(4.13) 

We apply KKT condition on (4.13) and obtain 
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4 ,1 2 ,2 1 ,3 1 ,5 2 ,6 4 ,7 0k k k k k k k kk
l l l l l l l l l l l l l lk

l

LR
a a a a a a

g
       


         


 (4.14) 

,1 ,2 ,3 ,4 ,5 ,6 ,7Pr 0k k k k k k kk
R k l l l l l l lk

l

LR

Sev
       


        


 (4.15) 

There are 9 unknown variables in (4.14) and (4.15). To get the Benders cut, we need to 

know the values of all the variables.  If the optimization problem (4.10) subject to (4.11)-

(4.12) and (4.A.8)-(4.A.14) is feasible, which could be guaranteed by SFT constraints, 

(4.12) should always be satisfied. Hence 

 

0k

l  , for all the feasible subproblems  (4.16) 

 

In (4.11), if 
*

i
P and *

j
PAR are obtained from the master, then

k

l
h  could be calculated. 

Substitute the
k

l
h into (4.A.8)-(4.A.14), only one of the seven constraints is effective. Thus, 

only one of the ,

k

l i (i =1, 2, …, 7) will be non-zero. Define k

lSev be the maximum right-hand 

side value of (4.A.8)-(4.A.14) for given
k

l
h , we get 

 

,

Pr , th

0,

k

k R k l

l i

if Sev corresponds to the i equation

otherwise





 


           i =1, 2, …, 7  (4.17) 

 

Substitute (4.17) into (4.14), we obtain the value of k

l , whose expression is omitted here. 

Thus, all the variables in (4.14) and (4.15) have been solved. We can write the optimality 

cut as shown in (4.18) 
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where k (k = 1, 2, …, NC) are variables introduced in the master problem, and 

,

1

NL
k kk
l i l

li

LR
sf

P








  (4.19) 

.

1

NL
k kk
l j l

lj

LR
sp

PAR








  (4.20) 

    Note that from the above approach we have obtained the Benders cuts algebraically, 

without solving the optimization problem (4.18) subjects to (4.20) and (4.A.8)-(4.A.14). 

This has greatly improved the computational efficiency of RB-SCED. 

The master problem, includes the SFT constraints and the optimality cuts form the 

subproblem, could be written in the following LP 

 

0

0

0

Min ( )

. . ( ) 0

( ) 0

constraints

(4.18)

k

k

f P

s t h P

q P

SFT

Optimality cuts in









 
(4.21) 

 

The algorithm of the inner level is outlined as below 
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Inner level algorithm: Benders decomposition 

 

1: Define: iteration no. v, the set of SFT constraints Sv, the set of optimality cut constraints 

Ov. Set initial conditions: v = 0, S0 = Ø, and O0 = Ø, where Ø is empty set. 

2: while (Sv ≠ Ø and Ov ≠ Ø and v ≠ 0) do 

3: v ← v+1. 

4: Solve master problem (21), obtain the dispatch P* and PAR*. 

5:     for (k = 1 to NC) do 

6:         Solve the kth subproblem. 

7:          if (infeasible) do 

8:               Sv ← SFT constraints. 

9:          else if (optimal but
1

Pr
NL

k

k R k l

l

Sev 


  ) do 

10:               Ov ← Optimal cut constraint (18) 

11:           else do 

12:                Sv = Ø and Ov = Ø.  

13:           end if 

14:       end for 

15:   end while 

The procedure for the comprehensive algorithm is shown in Fig. 4. 1. 
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Fig. 4.1.  Flowchart of RB-SCED algorithm 

 

4.5 Illustrative Example 

    The proposed RB-SCED approach was tested on the ISO New England (ISO-NE) bulk 

system. The system network data include 308 generating units, 546 loads, 2804 LMP 

locations, 12765 nodes and 33 PAR branches. In particular, we select one specific hour data 

of generators’ biding curves, reserve offers, nodal loads, and system reserve requirements, 

including 10 minute spinning reserve, 10 minute non-spinning reserve, and 30 minute 

reserve. The total generation capacity in the hour is 30062.4 MW and the forecasted load is 

18576.1 MW. 

Other parameters are set as follows: we set c1 equals to 5 and c2 equals to 25 according to 

the ISO-NE’s network data. The condition of convergence for LR algorithm is set as ɛ = 

0.01, where ɛ is the average change rate of lambda at two successive iterations.  

The proposed two-level algorithm by combining using Lagrangian Relaxation and 

Benders decomposition is tested in GAMS. The linear programming is solved with CPLEX 

12.1 on a PC laptop with Inter Core 2Duo 2.50 GHZ CPU and 3GB memory. The average 
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computation time for the approach is 20 minutes. 

We compare the result of SCED and RB-SCED in the following 3 ways: a) The difference 

of generation costs between SCED and RB-SCED; b) the costs of RB-SCED for different 

operation modes of HSM, ESM and HEM; c) the sensitivity of the cost to different risk level. 

Our test of the algorithm based on the ISO-NE system has provided 3 different results: a) 

we found that for some specific hours the algorithm fails on ISO-NE data; b) we will 

provide the test result of RB-SCED algorithm on a single hour; b) we provide result of RB-

SCED for successive 24 hours. 

 

4.5.1 Failure of the algorithm for some specific hours 

The network data is from the EMS of ISO-NE control room on the first hour of June 16, 

2010. At first we run the SCED for this specific hour. The result shows that there are totally 

7 lines be over 90% thermal limits. One of the lines is at base case, with power flow b -

180.9 MW on it while the thermal rating of the line at normal state is 192 MW. The loading 

rate is -94.2%. The other 6 lines comes from post-contingency states, with the loading rates 

be 103.9%, 110.3%, 100.4%, -96.6%, 100.4% and -96.9%, respectively.  

We found that the cost does not change with the LR iterations when the value of lambda 

changes. This means that the outer level algorithm, whose function is to adjust the risk level 

of the system, has been failed. The reason is analyzed as follows. At base-case, only bus 

THAMES_115_9997 has different shift factor on line Line_MONTVLLE_1120-1. The value 

of the shift factor is -0.9995, while the shift factor of other buses to the line in the system is 

0.0005. The bus THAMES_115_9997 corresponds to unit UN.THAMES 115 THAM, which 
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has identical EcoMax and EcoMin. This means, we cannot change the output of this unit to 

adjust the flow on line Line_MONTVLLE_1120-1. The procedure is indicated in Fig. 4.2. 

 

 

Fig. 4.2. Failure to adjust the output of  unit with EcoMin = EcoMax 

 

The reason for the failure the number of lines be over 90% limit at base-case and 

contingency cases are two small. If there are more units can be dispatched to change flow on 

a highly- loaded line, the probability of failure will decrease. This also means, the benefits 

of RB-SCOPF is more pronounced when there is often significant congestion on a system. 

 

4.5.2 The Application of RB-SCED on a single hour 

The network data is from the EMS of ISO-NE control room on the tenth hour of June 16, 

2010. Totally there are 5 LR iterations at the outer level and 41 Benders iterations at the 

outer level. The algorithm takes about 20 minutes. The evolution of Lambda_R is shown in 

Table 4.1. The change of upper and lower bounds of Benders iterations on the last time of 

LR algorithm is shown in Fig. 4.3. 

The comparison of SCED and different modes of RB-SCED are shown in Table 4.2. 

Compared to the traditional SCED, the RB-SCED will have lower risk level. The HSM 

mode has the highest mode, while the ESM and HEM modes have lower cost than the 
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SCED. The value of cost is negative is because the ISO-NE allows demand side bidding in 

the electricity market. 

 

Table 4.1 Lagrangian Multiplier Evolution 

 

LR iterations Value of Lambda 

LRI1 100000.0 

LRI2 158956.7 

LRI3 145091.7 

LRI4 132941.3 

LRI5 130976.5 

 

 

 

Fig. 4.3. Iterations of Benders decomposition 

 

Table 4.2 Compare the Results of SCED and RB-SCED on a Single Hour 

 

 Risk Cost 

SCED 1.98 -3495859.052 

RB-SCED 

HSM 1.03 -3675941.175 

ESM 1.03 -3386471.231 

HEM 1.03 -3301268.053 
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4.5.3 The Application of RB-SCED on successive 10 hours 

The network data is from the EMS of ISO-NE control room on the first 10 hours of June 

16, 2010. The result of the algorithm on successive 10 hours based on ISO-NE system is 

shown in Table 4.3. Since the algorithm fails at hour 1, the corresponding values are blank 

in the table. We present the result of HSM mode for RB-SCED only in this part. 

 

Table 4.3 Compare the Results of SCED and RB-SCED on Successive 10 Hours 

 

Hours 
Cost ($) Risk 

SCED RB-SCED SCED RB-SCED 

1 -2551732  0.403533  

2 -2583216 -2942251 0.903533 0.522676 

3 -2534003 -2899433 0.703533 0.403841 

4 -2575826 -2799534 1.203533 0.733808 

5 -2534559 -2758140 0.903533 0.505793 

6 -2436926 -2690770 0.603533 0.303807 

7 -2638981 -3083830 1.103533 0.680352 

8 -3040819 -3169676 1.403579 0.848846 

9 -3284619 -3433705 1.403604 0.713021 

10 -3495859 -3675941 1.983549 1.048818 

 

4.6 Conclusion 

    A new real-time dispatch model, called risk-based security constrained economic dispatch 

that takes account both the N-1 post-contingency security criteria and the risk level of the 

system, is proposed in this paper. The operational decision made by this model could reach 

a higher security level. By combining the advantages of RBED and SCED on security 

control, the RB-SCED could realize a better tradeoff between the security and the economy 

of the system, based on the real operational condition. However, the computation of RB-

SCED is more complicated than that of SCED. We proposed a two level decomposition 
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algorithm to solve the model. At the outer level, Lagrangian relaxation is applied to relax 

the risk constraint into the objective function. At the inner level, Benders decomposition is 

used to solve the LR sub-problem. To further improve the computational efficiency, 

simultaneous feasibility test (SFT) is applied to generate the shift factors of the overloading 

circuits. The test result based on ISO-NE bulk system indicates that the RB-SCED has lower 

risk and lower costs than traditional SCED. 

    Some interesting directions are open for the future research. First, to encourage the ISOs 

to replace the current SCED with new RB-SCED, we should demonstrate more benefits the 

RB-SCED may have. For example, the security assessment study, on both static security and 

dynamic security, should be enforced to compare the performance of the two different 

dispatch tools. The assessment results are useful for ISO’s decision on adopting the risk-

based approach. Second, as a new market clearing tool, the RB-SCED will determine a new 

LMP mechanism for the market participants. The new LMP should include an additional 

risk component, which should be investigated further. Finally, it is useful to make a 

sensitivity analysis of the model between the objective function and the constraint 

parameters, like KC and KR. This would helpful in determine how much cost reduction will 

be obtained if we transfer to RB-SCED. 

 

Appendix 

    In Section 2.3.3 of Chapter 2, Fig. 2.4 shows a piece-wise linear function. To simplify the 

expression, define a bunch of variables 

 

     
1 ,

10 /
l LTE l

a P  (4.A.1) 
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2 1 , ,

( 1) / ( )
l STE l LTE l

a c P P    (4.A.2) 

     
3 1 , , , ,

( ) / ( )
l LTE l STE l STE l LTE l

a c P P P P    (4.A.3) 

     
4 2 1 , ,

( ) / ( )
l DAL l STE l

a c c P P    (4.A.4) 

     
5 2 , 1 , , ,

( ) / ( )
l STE l DAL l DAL l STE l

a c P c P P P    (4.A.5) 

 

all of which are constants for the lth circuit.  

The expression of the severity function is then 
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 (4.A.6) 

 

In order to involve this piece-wise linear function into an optimization problem, an 

applicable way is to introduce 7 integer variables, each one of which represents a 0-1 state 

indicating if Pl is located in the corresponding area. However, this may greatly increase the 

computational complexity of the original problem. Thus, an applicable way is to transfer the 

deterministic expression in (4.A.6) into an optimization problem as shown in (4.A.7)-

(4.A.14) 

 

        Min k

l
Sev  (4.A.7) 
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         Subject to 

        
4 5

k k

l l l l
Sev a g a    (4.A.8) 

        
2 3

k k

l l l l
Sev a g a    (4.A.9) 

        
1

9k k

l l l
Sev a g    (4.A.10) 

        0k

l
Sev   (4.A.11) 

        
1

9k k

l l l
Sev a g   (4.A.12) 

        
2 3

k k

l l l l
Sev a g a   (4.A.13) 

        
4 5

k k

l l l l
Sev a g a   (4.A.14) 

Note that this transformation requires that the function to be convex, which could to 

satisfied by equation (2.15) and (2.16) in Section 2.3.3, Chapter 2. 
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CHAPTER 5. RISK AND “N-1” CRITERIA COORDINATION FOR REAL-TIME 

OPERATIONS 

 

5.1 Introduction 

    Risk assessment (RA) has been widely used in other industries such as nuclear, 

aerospace, oil, food, public health, information technology and financial engineering. It is an 

emerging new approach for economy-security decision-making. Most previous work 

focuses on Risk-based Security Assessment (RBSA) [32], [67], [109]. Most control center 

operators continue to use the “N-1” principle alone because it is simple to implement and to 

understand, and our tools have not evolved to enable observation of its weaknesses. We 

have developed a risk-based security-constrained optimal power flow (RB-SCOPF) for real-

time risk assessment and control. The RB-SCOPF enforces three types of flow-related 

constraints: normal state deterministic flow limits, contingency state deterministic flow 

limits (the “N-1” criteria), and contingency state system risk, which depends only on 

contingency states but not the normal state. Each constraint group is scaled by a single 

parameter setting allowing tradeoffs between deterministic constraints and system risk. 

Reference [68] illustrates long-term benefits to economy and to system risk of operating 

under the RB-SCOPF relative to SCOPF. In this chapter, we show how cost and risk change 

in RB-SCOPF and SCOPF, using coordination parameters in RB-SCOPF to effect tradeoffs 

between system risk and N-1 criteria, and thereby characterize conditions under which RB-

SCOPF outperforms SCOPF. In Section 5.2, we compare the SCOPF and RB-SCOPF 

models and describe the method used for the coordination. Section 5.3 presents study 

results, and Section 5.4 concludes. 
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5.2 Risk and “N-1” Criteria Coordination 

In our work, risk is a probabilistic index designed to reflect the overall stress of the 

system’s operating condition. It extends from the notion of risk as an expected severity, i.e., 

the summation over possible contingency states of each state’s probability multiplied by its 

severity. In previous RBSA work, risk indices are calculated for severity capturing overload, 

cascading overload, low voltage and voltage instability. Here, we consider only the risk of 

post-contingency circuit overloading in the RB-SCOPF model, consistent with real-time 

dispatching in electricity markets. Although the risk calculation is based on thermal loading 

only, studies have shown that its use enhances post-contingency voltage, angle and 

cascading performance. The system’s overall risk can be expressed as formulation (2.25). 

The SCOPF and RB-SCOPF models have been elaborated in previous chapters. To better 

illustrate the topic in this chapter, we summarize them in Table 5.1, where f(P0) is the sum 

of generation cost, equality constraints h(P0) = 0 are power flow balance equations, gmin ≤ 

g(P0)≤ gmax represent constraints on circuit flows and bus injection limits, and gk(P0) ≤ g'max 

are N-1 contingency constraints. In the RB-SCOPF model, a parameter KC (KC ≥1) is used 

to scale the emergency thermal limit g'max, to facilitate tradeoffs between post-contingency 

overloading, system risk reduction, and improved economic objective. Use of KC is 

consistent with the concept of adaptive emergency transmission rates (ATR) [73], which has 

been applied in the real-time operation of ISO New England. Riskmax is the maximum 

allowed system risk, and KR (KR ≤1) is a parameter to control the system’s overall risk level. 
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Table 5.1 Formulation of Security-constrained OPF Models 

 

Model A: SCOPF Model B: RB-SCOPF 

 0Min ( )f P   0Min ( )f P  

Subject to Subject to 

0( ) 0h P   0( ) 0h P   

0min max
( )g g P g   0min max

( )g g P g   

0min max
( ) , 1,...,

k
g g P g k NC     

0min max
( ) , 1,...,

C Ck
K g g P K g k NC     

 0 0 max1
0 ( ( ),... ( ))

RNC
Risk g P g P K Risk   

 

In RB-SCOPF, it is the coordination between KR and KC that enables control over 

tradeoffs between individual circuit risk, system risk, and economy. In what follows, we 

illustrate the significance of KR and KC selections. We accomplish this by studying the 

dependence of objective function f(P0) with KR and KC. The procedure for performing this 

utilizes sensitivities (shadow prices) of f(P0) to KR or KC within an interval of the parameter, 

bounded by “breakpoints,” for which sensitivity analysis is valid. Breakpoints are identified 

when the shadow price changes significantly, according to the following binary search tree 

algorithm: 

1) Select the KR range [KR
min

, KR
max

]. Solve the LP problem at KR
min

 and KR
max

; save 

the objective functions and the shadow prices of the risk constraint. 

2) Solve the LP at KR
(1)

 = (KR
min

 + KR
max

)/2. This is used as the parent node of the tree. 

It divides the tree into 2 parts: the left subtree with KR range [KR
min

, KR
(1)

] and the 

right subtreee with [KR
(1)

, KR
max

].  

3) If the objective at KR
(1)

 equals to the objective at KR
min

 (KR
max

), discard the left (right) 

subtree. Otherwise, let KR
(2)

 = (KR
min

 + KR
(1)

)/2 and (KR
(1)

  + KR
max

)/2, and identify 

two new parent nodes. Continue the procedure in 1). 

4) The algorithm stops if the differences in objectives for all parent and child nodes 
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are within a predefined vale ɛ. The breakpoints are the KR values at the “leaf” nodes. 

 

5.3 Numerical Illustration on IEEE 30-bus system 

The IEEE 30 bus system is used to illustrate the Table I models. The system has 30 buses, 

41 branches, 6 thermal units and 20 loads. We define 36 N-1 post-contingencies by 

assuming that every circuit could be lost and contribute to a contingency. The probability of 

a contingency is proportional to its line impedance, which is assumed to reflect line length. 

Table 5.2 illustrates the breakpoints when KC equals 1.05. Based on the breakpoint 

information we draw the cost-risk relationship curve. Similarly, we draw the curves for 

other values of KC, as shown in Fig. 5.1. This is called the KR-KC coordination diagram, 

which demonstrates the coordination between costs, risk and “N-1 criteria.” Two 

observations regarding this diagram follow. (1) Since SCOPF is a special case of RB-

SCOPF, and since we choose Riskmax equal to the risk associated with the operating 

condition computed by the SCOPF, the operating condition for SCOPF corresponds to the 

point (KR, KC) = (1, 1) in the diagram, a useful reference point. (2) The problem may 

become infeasible if we decrease KR. This is shown in Fig. 5.1, as the region where KR ≤ 

0.13 when KC = 1. The 3-D plot of KC-KR coordination is shown in Fig. 5.2. 

 

Table 5.2 “Breakpoints” When Kc is 1.05 

 

KR 1 0.82 0.46 0.28 0.12 0.025 0.006 

λ(×10
4
) 0.4 10.3 49.1 58.6 102.5 139.3 145.2 

 



www.manaraa.com

120 
 

 

 

 

Fig. 5.1.  The change of costs with system risk for fixed KC (KC equals to 1.00, 1.05, 1.10, 

1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, and 1.50, respectively, from top line to bottom line) 
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Fig. 5.2 3-D Plot of KC-KR coordination 

 

    It can be seen in Fig. 5.1 that the traditional SCOPF does not determine the best operating 

condition — neither is it the point with lowest cost nor is it the point with lowest risk. There 
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are points available in the diagram that are better than the point determined by SCOPF in 

terms of system risk and economics. By choosing proper KR and KC according to real-time 

conditions, the system may gain significant economic benefits while improving the security 

level, effects that will bear considerable benefit over time. For example, one may choose the 

“high security” operating point, say (KR, KC) = (0.6, 1), under conditions when high system 

security is required, such as heavy load and severe weather. Similarly, one may choose a 

“high economy” operating point, say (KR, KC) = (0.5, 1.2), if the system stress is low. 

Although a certain number and level of post-contingency overloading can be allowed under 

many different types of conditions, the use of “high economy” mode is most attractive under 

two specific types of conditions: 1) when post-contingency overloads occur only for what 

are perceived to be unlikely contingencies; 2) when corrective actions are available to 

rapidly reduce post-contingency flow on an overloaded circuit. The degree of allowable 

post-contingency overloading can be controlled through choice of KC, which can be 

identified based on the concept of ATR in three ways: 1) choose KC as the ATRs computed 

at selected flowgates; 2) choose KC as minimum ATR of all lines; 3) use different KC for 

several different line groups, where the grouping is done geographically and/or by voltage 

levels. 

 

5.4 Conclusion 

    Three contributions are made in this chapter. First, it extends the traditional deterministic 

SCOPF to RB-SCOPF and provides a visualization diagram, called KR-KC coordination 

diagram, for decision-support that enables efficient security-economy tradeoff analysis. 

Second, it proposes an efficient algorithm to find “breakpoints” in the KR-KC coordination 
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diagram. Third, it shows how system risk and post-contingency overload levels on 

individual circuits can be coordinated to enhance both economy and security of a power 

system in real-time operations, and it identifies types of conditions for which high-security 

and high-economy modes would be best suited. Use of RB-SCOPF results in improved 

long-term power system performance, for both economics and security; this chapter 

provides additional insight on its use to facilitate its eventual adoption by industry. 
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CHAPTER 6. RISK-BASED LOCATIONAL MARGINAL PRICING AND 

CONGESTION MANAGEMENT 

 

6.1    Introduction 

The Locational Marginal Pricing (LMP) is a market-pricing approach used to determine 

optimal generation unit dispatches as well as locational energy and transmission congestion 

prices. It is defined as the cost of supplying an increment of load at the system or location. 

The LMP mechanism has been implemented in large number of electricity markets 

worldwide, such as ISO-New England, New York ISO, PJM, California ISO, Midwest ISO, 

New Zealand, etc. [110]-[114]. 

Traditionally, the LMP is derived from security-constrained economic dispatch model. 

The LMP formulation can be decomposed into three components: marginal energy price, 

marginal loss price, and marginal congestion price [115]-[118]. In reference [119], a risk-

based security-constrained economic dispatch (RB-SCED) model has been developed for 

the purpose of quantifying/controlling the system’s overall risk level. Compare to SCED, 

RB-SCED enforces three types of flow-related constraints: normal state deterministic flow 

limits, contingency state deterministic flow limits (the “N-1” criteria) — both appears in 

SCED, and contingency state system risk — appears in RB-SCED only. Thus, the LMP 

derived from RB-SCED should contain an additional component called marginal risk price, 

and the traditional LMP is extended to risk-based LMP (RLMP). The risk component is a 

price signal to reflect the system’s overall security level. In this paper, we will examine the 

features of RLMP and compare its differences with LMP. 
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In the current electricity market, all congestion management systems are using linear 

programming (LP) techniques in market clearing process [79]. This is achieved by DC 

idealization of power flow equations. Thus, the DCOPF model is used in this paper. In 

previous literatures, the calculation of loss component in DCOPF-based LMP remains a 

challenging task [79], [120]. To avoid the complicated issue related with loss modeling and 

emphasize the main point to be presented, the loss price is ignored in this paper. 

The rest of this chapter is organized as follows. Section 6.2 describes the traditional 

LMP model. Section 6.3 presents the definition and formulation of risk-based LMP. Section 

6.4 discusses the features of RLMP through a six-bus system. Section 6.5 concludes. 

 

6.2    Traditional LMP model 

    Traditionally, LMPs are calculated based on the security constrained economic dispatch 

(SCED) in day-ahead and real-time electricity market. The objective of SCED is to 

maximize social surplus while meeting the system load balance operational constraints. The 

so-called “N-1” criteria, which require no transmission constraints violation under all pre-

defined contingencies, must be satisfied in SCED model. In most cases of real-time market 

there is absence of price-sensitive demand, under which the maximizing of social surplus is 

equivalent to minimizing production costs. Without loss of generality, we will use this form 

of objective function in the model. The SCED is an OPF problem considering security 

transmission constraints at both normal and post-contingency states and, under the above 

assumptions, can be formulated as follows 

1

Min
NG

i i

i

c P


  (6.1) 
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,k k

l l
h Limit    , .for l all lines k all contingencies   (6.6) 

 

where equation (6.1) is the objective function, (6.2) is the power balance constraint, (6.3) is 

the transmission limit at normal state, (6.4) is the generation output limits, (6.5) is the circuit 

flows at post-contingency states, and (6.6) is the post-contingency flow limits. All the 

parameters in (6.1) – (6.6) and in the rest of this chapter are defined in the Appendix of this 

chapter. Define
1
 ,

0

1
0

l
  ,

max min

1 1
0 and 0

i i
   ,

1

k

l
 ,

1
0k

l
  be the  Lagrangian multipliers of 

constraints (6.2), (6.3), (6.4), (6.5), and (6.6), respectively. The LMP is defined as a change 

in production cost due to an increment of load at the location. By this definition, the LMP at 

bus i can be obtain as the partial derivative of the Lagrangian of (6.1)-(6.6) 



www.manaraa.com

126 
 

 

 

1 1

1 1

0 0 0

1

1 1

max max min min

1 1

1 1

1

1 1 1

1

1 1

( ( ) )

[ ( ) ]

( ) ( )

[ ( )]

( )

NG NG

i i i i

i i

NL NG

l l i i i l

l i

NG NG

i i i i i i

i i

NC NL NG
k k k

l l l i i i

k l i

NC NL
k k k

l l l

k l

c P P D Loss

GSF P D Limit

P P P P

h GSF P D

h Limit

 



 





 



 

 



  

 

    

  

    

  

 

 

 

 

 



 (6.7) 

 

At the optimal point, the Karush–Kuhn–Tucker (KKT) conditions must be satisfied, as 

shown in (6.8)-(6.9) 
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    Then the LMP at bus i can be calculated in (6.10), by taking into account that

( ) ( )
i i

Loss D Loss P      and the equality in (6.9): 

0 01

1 1 1 1

1 1 1
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NL NC NL
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i l l i l l i

l k li i
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LMP GSF GSF

D P


   

 

  

 
    
 

   (6.10) 

    From (6.10), the LMP can be decomposed into three components: marginal energy price, 

marginal loss price and marginal congestion price, where 

 

1

Energy

i
LMP   (6.11) 

1

Loss

i

i

Loss
LMP

P



 


 (6.12) 
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0 0

1 1

1 1 1

( )
NL NC NL

Congestion k k

i l l i l l i

l k l

LMP GSF GSF 
 

  

     (6.13) 

 

    The actual solution of LMP calculation based on the above SCED model, especially the 

LMP loss modeling, remains a challenging task [115]-[117]. In the discussion of this work, 

the loss price is ignored to avoid complicated issues related to loss calculation, such as the 

choice of loss distribution factors and the modeling of distributed-slack reference [126]-

[127]. 

 

6.3    Definition and Calculation of Risk-based LMP 

6.3.1 Modeling of Overload Risk 

    In our work, risk is a probabilistic index designed to reflect the overall stress of the 

system’s operating condition. It extends from the notion of risk as an expected severity, i.e., 

the summation over possible contingency states of each state’s probability multiplied by its 

severity. The system’s overall risk can be expressed as formulation (2.25). 

As described in previous chapters, the overload severity of a post-contingency circuit is 

proportional to the circuit’s power flow as a percentage of the circuit’s rating (PR): the 

higher the PR is, the more severe the loading condition is. The severity function is the same 

as in section 2.3.3. To simplify the expression, only the positive part of the severity function 

is adopted here, as shown in Fig. 6.1. 
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Fig. 6.1. Overload severity function 

The expression of piece-wise linear function in Fig. 6.1 is 

,

1 , ,

2 3 , ,

4 5 , ,
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9, 0.9

,

,

k
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k k

l l LTE l l LTE lk
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l l l STE l l DAL l

h P

a h P h P
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a h a P h P
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 


  
 

  
   

 (6.14) 

where a1l, a2l, a3l, a4l and a5l are defined in chapter 2. In order to involve this piece-wise 

linear function into an optimization problem, transfer the deterministic formulation (6.14) 

into optimization form (6.15)-(6.19) 

Min k

l
Sev  (6.15) 

Subject to  

0,k

l
Sev   (6.16) 

1
9,k k

l l l
Sev a h   (6.17) 

2 3
,k k

l l l l
Sev a h a   (6.18) 

4 5
.k k

l l l l
Sev a h a   (6.19) 
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6.3.2    Risk-based LMP decomposition 

    The RB-SCED can be formulated as 

1

Min
NG

i i

i

c P


  (6.20) 

Subject to:  

1 1

0,
NG NG

i i

i i

P D Loss
 

     (6.21) 

 0 0

1

( ) , ,
NG

l i i i l

i

GSF P D Limit for l all lines




    (6.22) 

min max ,
i i i

P P P   (6.23) 

1

( ) ,
NG

k k

l l i i i

i

h GSF P D




     , ,for l all lines k all contingencies   (6.24) 

,k k

l C l
h K Limit     , ,for l all lines k all contingencies   (6.25) 

0,k

l
Sev   (6.26) 

1
9,k k

l l l
Sev a h   (6.27) 

2 3
,k k

l l l l
Sev a h a   (6.28) 

4 5
,k k

l l l l
Sev a h a   (6.29) 

1 1

NC NL
k

k l R max

k l

Pr Sev K Risk
 

    (6.30) 

 

where equation (6.20) - (6.24) are the same with the ones in section 6.2, a parameter KC is 

multiplied to the transmission limit in (6.25), (6.26)-(6.30) are risk constraints 

corresponding to individual circuits, and (6.30) is the risk constraint related to the whole 
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system. Define
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and 0   be the Lagrangian multipliers of constraints (6.21) - (6.30), respectively. 

    The risk-based LMP, according to the RB-SCED model, can be calculated as the partial 

derivative of the Lagrangian of (6.20)-(6.30) 

2 2

1 1

0 0 0

2

1 1

max max min min

2 2

1 1

2

1 1 1

2

1 1

( ( ) )

[ ( ) ]

( ) ( )

[ ( )]

( )

NG NG

i i i i

i i

NL NG

l l i i i l

l i

NG NG

i i i i i i

i i

NC NL NG
k k k

l l l i i i

k l i

NC NL
k k k

l l C l

k l

c P P D Loss

GSF P D Limit

P P P P

h GSF P D

h K Limit

 



 





 



 

 



  

 

    

  

    

  

  

 

 

 

 

 ,1

1 1

,2 1 ,3 2 3

1 1 1 1

,4 4 5

1 1

1 1

( 9) ( )

( )

( )

NC NL
k k

l l

k l

NC NL NC NL
k k k k k k

l l l l l l l l l

k l k l

NC NL
k k k

l l l l l

k l

NC NL
k

k l R max

k l

Sev

Sev a h Sev a h a

Sev a h a

Pr Sev K Risk



 





 

   

 

 



     

  

  

 

 



 
 

(6.31) 

 

At the optimal point, the KKT conditions must be satisfied, as shown in (6.32)-(6.33) 
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    The risk-based LMP at bus i can be calculated as: 
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(6.34) 
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At optimal solution, the values of post-contingency flows k

l
h are known. If no flows are at 

the corner points, i.e., points (0.9LTE, 0), (LTE, 1), and (STE, c1) in Fig. 6.1, then only one 

of the four constraints is effective in (6.27)-(6.30), depending on what interval the optimal 

value of
*( )k

l
h is within. Therefore, only one of the Lagrangian multipliers 

,

k

l i
 (i = 1, 2, 3, 4) 

will be non-zero. Define four segments in Fig. 6.1: segment 1 be (0, 0.9PLTE,l), segment 2 be 

(0.9PLTE,l, PLTE,l), segment 3 be (PLTE,l, PSTE,l), and segment 4 be (PSTE,l, PDAL,l). Then, from 

equation (6.33) we have 

*

,

, ( ) th
, 1,2,3,4.

0,
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k k l
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otherwise
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 (6.36) 

Substitute (6.35) and (6.36) into (6.32), we have 

2 2

k k k

l l l kr Pr     (6.37) 

Substitute (6.37) into (6.34), we obtain the expression of risk-based LMP (RLMP) 
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(6.38) 

From (6.38), the Risk-based LMP can be decomposed into four components: marginal 

energy price, marginal loss price, marginal congestion price and marginal risk price, 
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(6.43) 

Equation (6.38) provides a new formulation for LMP calculations, where the energy, loss, 

congestion, and risk components are shown in equations (6.40)-(6.42), respectively. In what 

follows we will see that the forms of the energy, loss, and congestion components will 

remain the same no matter the post-contingency flow k

l
h is at corner points or not, but the 

form of the risk component will change. Thus, we use a subscript S1, which has been 

defined in the nomenclature, in (6.43) to demonstrate the risk component at set S1. 

If the optimal value of post-contingency flow *( )k

l
h is on one of the corner points, two of 

the four constraints will be binding in (6.27)-(6.30). The KKT conditions in (6.32) and 

(6.33), and the original form of RLMP in (6.34) will remain the same, but the form of 

RLMP components will change. If *( )k

l
h is on corner point (0.9LTE, 0), both constraint (6.27) 

and (6.28) are binding, and constraints (6.29) and (6.30) are unbinding. Thus
,1

k

l
 and

,2

k

l
 are 

nonzero, while
,3

k

l
 and

,4

k

l
 equal to zero. From (6.32) and (6.33), we have 

2 2 ,2 1

k k k

l l l la     (6.44) 

 

Substitute (6.44) into (6.34), we obtain the form of RLMP at corner point (0.9LTE, 0). 

The energy, loss, and congestion components are the same as in (6.40)-(6.42), except the 
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risk component, whose form has to be changed as in (6.45): 
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 (6.45) 

Similarly, if *( )k

l
h is on corner point (LTE, 1), the risk component is shown in (6.46): 

3
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If *( )k

l
h is on corner point (STE, c1), the risk component is shown in (6.47): 

4
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l
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 Then the formulation of RLMP is 

1 2 3

4

Risk Risk Risk Risk

i i i iS S S

Risk

i S

RLMP RLMP RLMP RLMP

RLMP
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

 (6.48) 

 

Compared with traditional LMP, the Risk-based LMP has two changes: 1) Since a multiplier 

KC ≥ 1 is multiplied to the post-contingency transmission limit, the Lagrangian multipliers 

associated with these constraints are changed. Thus the congestion part of risk-based LMP is 

different. This is shown in (6.13) and (6.42), where
2

k

l
 is different with

1

k

l
 . 2) An additional 

component, risk, is added to the traditional LMP. The risk component in (6.43), (6.45)-(6.47) 

is a price signal to reflect the system’s overall security level. In the next section, we will 

discuss more features about the risk component, and examine how risk-based LMP will 

change the social surplus and market benefits. 
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6.4    Features of Risk-based LMP 

In this section, a six-bus example [57] is presented to demonstrate the features of risk-

based LMP. The single line system diagram is shown in Fig. 6.2. There are 6 buses, 11 

transmission lines, 3 generators, and 3 loads in the system. All the line impedances are 

shown in the diagram with the per unit values. The loads at buses D, E, and F are 70, 70, 

and 160 MW. The original generation cost curves at bus A, B, and C are 

 

3 2( ) 5.33 10 11.669 213
A A A

Cost P P P      (6.49) 

3 2( ) 8.89 10 10.333 200
B B B

Cost P P P      (6.50) 

3 2( ) 7.41 10 10.833 240
C C C

Cost P P P      (6.51) 

 

respectively. In order to adapt to the linear programming procedure, we equally divide the 

generation output interval [Pmin, Pmax] into 3 parts, and use 3-segment linear curves to 

approximate the quadratic cost curve. The economic maximum (economic minimum) of 

generator A, B and C is 200 MW (50 MW), 150 MW (37.5 MW), and 180 MW (45 MW), 

respectively. The load at bus D, E, and F is 70 MW, 70 MW, and 160 MW, respectively. 

Line B-D and C-E are the limiting elements, with LTE, SET and DAL values shown in 

Table 6.1. All the other lines are assumed to have unlimited transmission capacities. 

Parameter c1 and c2 in Fig. 6.1 is set to 3 and 10, respectively. Eleven “N-1” post-

contingencies are defined in this example, i.e., each transmission line can be lost thus lead to 

a contingency. The probabilities of those contingencies are assumed to be identically 0.002 

for the purpose of focusing on the effects of severity function only. In reality, the probability 
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of post-contingencies depends on the line length, voltage level, and loading and weather 

conditions, thus more accurate risk values can be obtained if we use more complicated 

probability models. 
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Fig. 6.2. Six-bus system diagram 

 

Table 6.1 Thermal Limits on Line B-D and C-E 

 

 LTE (MW) STE (MW) DAL (MW) 

Line B-D 58 66 85 

Line C-E 31 35 46 

 

The calculation of loss component remains a challenging task in DCOPF-based LMP. In 

the following discussions, we ignore the loss price to avoid complicated issues related with 

marginal loss modeling and emphasis the main point to be presented. Hence, in the above 

SCED and RB-SCED models, the Loss is assumed to be equals to 0. The shift factors are 

calculated with bus A as the slack reference. Since we assume the system loss is 0, the result 

does not depend on the choice of reference bus. 

The coordination of KR and KC can leads to different operation conditions. Similar to 

previous chapters, three operation models are defined for RB-SCED: 

 High Security Mode (HSM), for all operation conditions when KR ≤ 1 and KC = 1. 
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 Economy-Security Mode (ESM), for all operation conditions when KR ≤ 1 and KC 

be slightly larger than 1, e.g., KC =1.05. 

 High Economy Mode (HEM), for all operation conditions when KR ≤ 1 and KC be 

obviously larger than 1, e.g., KC =1.20. 

    Table 6.2 shows the dispatch results for SCED, HSM (KC =1, KR = 0.9), ESM (KC =1.05, 

KR = 0.9) and HEM (KC =1.2, KR = 1). The system risk levels for them are 0,012, 0.0108, 

0.0108, and 0.012, respectively. The operation costs for them are $4376.52, $4381.63, 

$4371.03, and $4352.09, respectively. The HSM do not allow post-contingency violations 

and has lower risk level, thus has higher security nevertheless higher cost than SCED. The 

ESM and HEM have lower (or at most equal) risk and lower costs than SCED. From (6.49) 

– (6.51) there exists relations between generation costs: Generation A > Generation C > 

Generation B, as shown in Fig. 6.3. The ESM and HEM are prompted to dispatch more 

MWs on cheaper units. The post-contingency flows of SCED, HSM, ESM and HEM are 

shown in Table 6.3 - Table 6.6.  

 

Fig. 6.3.  Generation costs at bus A, B, and C 
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Table 6.2 Generation Outputs at Different Operation Conditions 

 

 SCED 

HSM  

(KC =1.0; KR 

=0.9) 

ESM 

 (KC =1.05; 

KR =0.9) 

HEM  

(KC =1.2; 

KR =1) 

Gen. at bus A (MW) 192.90 195.80 191.31 180.46 

Gen. at bus B (MW) 66.00 65.64 71.56 82.41 

Gen. at bus C (MW) 48.97 46.43 45.00 45.00 

 

 

Table 6.3 Post-contingency Flows for SCED 

 

Conting. No. Outage Line 
Post-conting. flow 

at line B-F (MW) 

Post-conting. flow 

at line C-E (MW) 

Conting. #1 A-B -19.39 -5.90 

Conting. #2 A-D 66.00 -1.45 

Conting. #3 A-E 5.00 13.18 

Conting. #4 B-C 18.97 -7.88 

Conting. #5 B-D 0.00 3.16 

Conting. #6 B-E 21.32 6.32 

Conting. #7 B-F 26.48 -10.24 

Conting. #8 C-E 15.40 0.00 

Conting. #9 C-F 13.85 35.00 

Conting. #10 D-E 7.38 3.27 

Conting. #11 E-F 10.94 -8.77 

 

 

Table 6.4 Post-contingency Flows for HSM (KC=1; KR=0.9) 

 

Conting. No. Outage Line 
Post-conting. flow 

at line B-F (MW) 

Post-conting. flow 

at line C-E (MW) 

Conting. #1 A-B -20.76 -6.80 

Conting. #2 A-D 66.00 -2.24 

Conting. #3 A-E 4.19 12.59 

Conting. #4 B-C 18.45 -8.95 

Conting. #5 B-D 0.00 2.31 

Conting. #6 B-E 20.68 5.58 

Conting. #7 B-F 25.92 -11.10 

Conting. #8 C-E 14.60 0.00 

Conting. #9 C-F 13.21 33.80 

Conting. #10 D-E 6.59 2.55 

Conting. #11 E-F 10.21 -9.67 
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Table 6.5 Post-contingency Flows for ESM (KC=1.05; KR=0.9) 

 

Conting. No. Outage Line 
Post-conting. flow 

at line B-F (MW) 

Post-conting. flow 

at line C-E (MW) 

Conting. #1 A-B -17.92 -6.59 

Conting. #2 A-D 66.43 -2.23 

Conting. #3 A-E 5.87 12.38 

Conting. #4 B-C 20.11 -9.30 

Conting. #5 B-D 0.00 2.48 

Conting. #6 B-E 22.40 5.69 

Conting. #7 B-F 27.58 -11.27 

Conting. #8 C-E 16.13 0.00 

Conting. #9 C-F 14.76 33.48 

Conting. #10 D-E 8.06 2.52 

Conting. #11 E-F 11.78 -9.65 

 

 

Table 6.6 Post-contingency Flows for HEM (KC=1.2; KR=1) 

 

Conting. No. Outage Line 
Post-conting. flow 

at line B-F (MW) 

Post-conting. flow 

at line C-E (MW) 

Conting. #1 A-B -11.53 -5.31 

Conting. #2 A-D 67.20 -1.43 

Conting. #3 A-E 9.65 12.58 

Conting. #4 B-C 23.59 -8.85 

Conting. #5 B-D 0.00 3.64 

Conting. #6 B-E 26.10 6.65 

Conting. #7 B-F 31.08 -10.72 

Conting. #8 C-E 19.64 0.00 

Conting. #9 C-F 18.14 34.12 

Conting. #10 D-E 11.46 3.19 

Conting. #11 E-F 15.27 -8.71 

 

In what follows, we will discuss the features of RLMP according to three questions based 

on the dispatch result of six-bus system. 

Question 1: What’s the meaning of the risk component? 

 Traditional LMPs are determined from the result of SCED. LMP may differ at 

different locations due to transmission congestion and system losses. The RLMPs are 

determined from risk-based SCED, and differ at different locations due to transmission 
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congestion, system losses, and risk limiting. In RLMP, the risk component is a price signal 

to reflect the system’s overall security level.  

Table 6.7 compares the LMPs for SCED and RLMPs for various cases of RB-SCED based 

on the six-bus system.  In SCED model, high LMPs are located at bus D ($34.58) and bus E 

($16.95). This is because they are connected to congestion lines B-D and C-E and cheap 

energy cannot be delivered to them when there is 1MW load increase at them due to 

congestion.  This can be verified from the LMP congestion component, where Bus D and E 

have nontrivial positive values. The LMP energy component equals to $13.53, which is 

marginal cost at reference bus. LMP congestion component is negative at bus B and C. This 

means if we transfer 1 MW power from them to the reference bus, counter flows will be 

generated at line B-D and C-E, thus relieve the congestions on them. 

In the HSM with KC =1 and KR =0.9, the RLMPs at bus D and E are smaller than LMPs. 

Since no post-contingency flow is allowed to be greater than STE, there may still be 

congestions on line B-D and C-E, and the RLMP congestion component is nonzero at non-

reference bus. However, the RLMP congestion components are less than the LMP 

congestion components at bus D and E, and greater at bus B and C.  This is because the RB-

SCED model enforces constraints on highly-loaded lines and the post-contingency flows on 

non-highly loaded lines may decrease. The RLMP risk component, as shown in Table 6.7, is 

used to price the system risk of moving energy from one bus to the reference bus. 

In ESM and HEM of Table 6.7, the congestion component equals to zero at all buses since 

we allow the post-contingency flows being larger than STE (KC  > 1), degree of the flow 

violation is controlled by the risk constraint. Compared to the LMPs, RLMP values at each 

bus are closer and without large deviations between buses.   
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Table 6.7 Results of LMP and RLMP 

 

Model 
Bus 

Name 
(R)LMP 

(R)LMP 

Energy 

(R)LMP 

Loss 

(R)LMP 

Congestion 

RLMP 

Risk 

SCED 

A 13.53 13.53 0 0.00 - 

B 11.33 13.53 0 -2.20 - 

C 11.83 13.53 0 -1.70 - 

D 34.58 13.53 0 21.04 - 

E 16.95 13.53 0 3.41 - 

F 13.73 13.53 0 0.20 - 

HSM 

(KC =1; 

KR =0.9) 

A 13.53 13.53 0 0.00 0.00 

B 12.11 13.53 0 -1.80 0.37 

C 14.99 13.53 0 0.26 1.19 

D 33.13 13.53 0 19.48 0.11 

E 15.51 13.53 0 2.70 -0.73 

F 14.30 13.53 0 0.14 0.62 

ESM 

(KC=1.05; 

KR =0.9) 

A 13.53 13.53 0 0 0.00 

B 14.66 13.53 0 0 1.13 

C 17.13 13.53 0 0 3.60 

D 13.87 13.53 0 0 0.33 

E 11.35 13.53 0 0 -2.19 

F 15.41 13.53 0 0 1.87 

HEM 

(KC =1.2; 

KR =1) 

A 13.53 13.53 0 0 0.00 

B 14.32 13.53 0 0 0.79 

C 16.04 13.53 0 0 2.51 

D 13.77 13.53 0 0 0.23 

E 12.01 13.53 0 0 -1.53 

F 14.84 13.53 0 0 1.30 

 

Question 2: Which generators/loads would likely see higher (or lower) prices? 

Risk is neither good nor bad but is a direct measure of the extent to which there are 

differences in the cost of generation that cannot be equalized because of system risk 

requirements. The risk component in RLMP is used to price the overall risk of system. 

Generally, load pays risk price and generation is paid risk price. From Table 6.7, marginal 

risk prices can be positive or negative with respect to the reference bus. A positive marginal 

risk price means increasing the load at a bus would increase the system’s risk level, and a 
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negative marginal risk price means increasing the load at a bus would decrease the system’s 

risk level. Similarly, if an increase in generation at a bus results in an increase of system risk, 

then the marginal risk component of RLMP at that bus will be negative. 

In (49), the risk component of RLMP is a combination of probabilities, shift factors, and 

the Lagrangian multiplier of the risk constraint. Bus E has negative marginal risk value. In 

Table III, the energy component is the same for LMP and RLMP. If a bus is at the source 

(sink) of a congested line, the congestion component will increase (decrease) from LMP to 

RLMP. This observations lead to the following criteria of determining which buses will see 

higher (or lower) prices: 

 A bus will see higher price (than LMP) if it is at the source of a congestion line and 

the risk component is positive; 

 A bus will see lower price (than LMP) if it is at the sink of a congestion line and the 

risk component is negative. 

 Other buses may see either higher or lower price, depending on the calculating 

result. 

    In general, the RLMP mechanism has the effect of decreasing prices at buses with high 

LMPs and increasing prices at buses with low LMPs, thus makes smaller difference among 

buses. 

Question 3: How does the choice of KR and KC affect the RLMP? 

In the RB-SCED model, the choice of KR and KC affects the production costs and the 

generation dispatches. Reference [119] discussed some criteria on how to select appropriate 

KR and KC values. The general idea is to adopt high security model when the system 

operation condition is under stress and/or the weather condition is severe, and adopt 
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economy-security model or high economy model when the system operation condition is 

less stressful and no severe weather is foreseen. In today’s ISO-based electricity market, the 

calculation of LMP is a post-dispatch process. Thus, the choice of KR and KC is an important 

procedure to determine appropriate system operation conditions based on the real-time 

information and should be finished before the calculation of RLMP. 

Fig. 6.4 and Fig. 6.5 show how RLMP changes with KR at each bus when KC equals 1 and 

1.05, respectively. Bus A has the same RLMP values with KR changes and thus is not 

indicated in the figures. One may plot RLMP-KR relation figures for other KC values. The 

simulation result shows that the RB-SCED problem becomes infeasible when KR ≤ 0.83 for 

both cases. The step changes in the LMP and RLMP curves are due to the binding of new 

constraints in SCED and RB-SCED models.  

 

 

Fig. 6.4. RLMP changes with KR at each bus when KC = 1 
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Fig. 6.5. RLMP changes with KR at each bus when KC = 1.05 

 

6.5    Conclusion 

    Locational Marginal Pricing has been widely used in today’s ISO-based electricity 

markets [121]-[122]. The successful application of LMP is enhanced by recent research on 

distributed-slack based LMP, reference bus independent LMP, ACOPF based LMP, and 

continuous LMP, etc. [123]-[129]. However, all of those researches are deterministic 

approach. In this chapter, we developed the Risk-based LMP based on risk-based SCED 

model proposed in previous chapters. Traditional LMP is composed of three components: 

marginal energy, marginal loss and marginal congestion. The RLMP includes an additional 

component, called risk component, besides the three components. The risk component is a 

price signal to reflect the system’s overall security level. In this chapter, we have researched 

the features of RLMP on a six-bus system.  

 

NOMENCLATURE 

N Number of buses 

NG Number of generators 
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NC Number of contingencies 

NL Number of lines 

l The lth circuit 

k The kth post-contingency 

ci Generation bid price 

Pi Generator output level 

Di Nodal loads 

Loss System physical loss 

0

l i
GSF



 
Generation shift factor to line l from bus i at normal state 

k

l i
GSF


 Generation shift factor to line l from bus i at post-contingency state 

0

l
Limit  Transmission limit of line l at normal state 

k

l
Limit  Transmission limit of line l at post-contingency state 

k

l
h  The power flow on line l at kth post-contingency 

LMPi Locational marginal pricing at bus i 

RLMPi Risk-based locational marginal pricing at bus i 

KC Parameter to control circuit overloading level 

KR Parameter to control system risk level 

PLTE,l Long time emergency rating of circuit l 

PSTE,l Short time emergency rating of circuit l 

PDAL,l Drastic action limit rating of circuit l 

k

l
Sev  Overload severity of circuit l at kth contingency 

S1 Set that the optimal post-contingency flows are not at corner points 

S2 Set that the optimal post-contingency flows are at corner point (0.9LTE, 0) 

S3 Set that the optimal post-contingency flows are at corner point (LTE, 1) 

S4 Set that the optimal post-contingency flows are at corner point (STE, c1) 
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CHAPTER 7. VOLTAGE INSTABILITY PERFORMANCE OF RB-SCOPF 

 

7.1    Introduction 

    In the previous chapters, we have demonstrated that operating conditions obtained from 

RB-SCOPF were more secure (less risky) than those obtained from SCOPF, where the 

assessment is based on a risk index that reflects line loading. This raises the question of 

whether the RB-SCOPF operating condition is more stable than the SCOPF-operating 

condition for other system problems. In this chapter, we compare the voltage stability 

performance of operating conditions obtained from RB-SCOPF and SCOPF, respectively, 

using a steady-state voltage instability index. We will model, for both the RB-SCOPF and 

the SCOPF operating conditions, a fictitious synchronous condenser (SC) with very wide 

reactive limits (e.g., ±1000 MVARs) at one reactive-weak extra-high voltage (e.g., 345 or 

500 kV) bus in the system. We use the SC to vary the voltage from its nominal value to a 

very low value, identifying the bus reactive injection necessary from the SC to hold the 

given voltage.  We identify the voltage instability point to be where additional negative 

reactive injection (corresponding to additional reactive load) no longer results in a solution.  

 

7.2    Q-V curve in voltage instability analysis 

    During the past decades, voltage collapse phenomena have received widely researches 

around the world and are proved in a large number of power systems as a major reason for 

system insecurity [130]-[136]. The mechanism of voltage collapse is complicated and is still 

under research with more in-depth description and modeling [137]-[145]. This chapter will 

not deal with the dynamic aspects of voltage collapse but rather focus on static aspects, i.e., 
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the determination of system’s power transfer capacity by calculating the P-V or Q-V curves. 

Since the purpose of this chapter is to compare the voltage instability performances between 

SCOPF and RB-SCOPF under different active power dispatches, we focus mainly on Q-V 

curve analysis.  

    The Q-V curve describes the relationship between the reactive power and the voltage 

variations at a given bus. A standard power flow program can be used to produce Q-V curve 

by adding a fictitious generator at the bus of concern with zero active power and recording 

how its reactive output Q varies with its voltage V. This continuation method provides the 

loadability limit with respect to reactive power increase at a single bus. The Q-V 

relationship demonstrates the sensitivity of bus voltages with respect to reactive power 

injections or absorptions: if Q-V sensitivity is positive for every bus, the system is voltage 

stable; if Q-V sensitivity is negative for at least one bus, the system is voltage stable. This is 

because the existing control systems, including transformer taps, generator VARs, etc., are 

designed based on the assumption that compensating VARs (Q) will increase voltage (V), 

and vice versa.  

    Fig. 7.1 shows the Q-V curve corresponding to a stable situation. The vertical axis depicts 

the reactive MVAR output of the fictitious generator, and the horizontal axis depicts the 

respective voltage to sustain the output. In Fig. 7.1, the base point is the system’s operating 

point, with the fictitious generator output being zero. As the voltage decreases, the reactive 

power consumption of the generator increases, which equivalently represents an increase in 

MVAR load. Thus, the Q-V curve is able to trace what the voltage would be as we increase 

the load MVAR. With the voltage decreases to a certain value, the MVAR value of the 

generator will stop decreasing and reach the “bottom” of the Q-V curve. This bottom point 
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is the maximum load MVAR increase at the bus, and any higher load may cause voltage 

collapse. 

    Fig. 7.2 illustrates an unstable situation where the curve does not cross horizontal axis Q 

= 0. The distance between the bottom point of the curve and the horizontal axis represents 

the MVARs margin to operability at the bus. It can be used to compute the minimum shunt 

compensation to restore the system back to voltage stable. 
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Fig. 7.1 Q-V Curve at a voltage stable bus 
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Fig. 7.2 Q-V Curve at a voltage unstable bus 

 

In practice, the Q-V curve can be drawn with a power flow program in the following 

steps: 

a) Modeling a synchronous condenser (SC), i.e., a generator having very wide 

reactive limits and with P = 0, at the target bus. 

b) Setting the bus voltage |V| to a desired value. 

c) Solving the system power flow. 

d) Reading the MVAR output of the SC. 

e) Repeat step b) – d) for a predefined range of voltages. 

    Note that the Q-V curves are easier to obtain than P-V curves. This is because the 

standard power flows cannot be solved around/below the “nose point” of PV curves, but 

they will solve near the “nose point” of Q-V curves. Another point to mention is that 

reactive power cannot be moved very far in a network, i.e., VARs do not travel, thus a 
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system may have VAR surplus but experience voltage instability if a local area in it has a 

VAR deficiency. 

 

7.3    Voltage Instability Performances of SCOPF and RB-SCOPF 

7.3.1 System Description 

The testing of voltage instability is ongoing on an IEEE 30-bus system. The system 

diagram and parameter are shown in section 3.5.1. There are 36 contingencies of concern in 

this system. The original generation cost curves for unit G1, G2, G3, G4, G5 and G6 are 

shown in Fig. 7.3. For each quadratic curve, we use 3-segment linear curves to approximate 

it. To better apply the voltage instability analysis, some changes are made to the original 

data as follows: we increase the voltage level at bus 4 to be 345 kV, which makes it be a 

high voltage bus. A synchronous condenser with very wide reactive limits (± 1000 MVARs) 

is located a bus 4 when calculating the power flows. 

In order to model losses in the lossless network, a base-case power flow is solved at first. 

The loss offset is -2.44 MW, which is calculated against the reference bus 1. We have 

solved the system using RB-SCOPF and using SCOPF. The active power dispatches of all 

generators are shown in Table 7.1. Since we relaxed the transmission limits by multiplying 

them with a parameter KC (>1) in ESM and HEM, they are able to dispatch more MWs from 

cheaper unit G2.  
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Fig. 7.3 Generation cost curves for unit G1, G2, G3, G4, G5 and G6 

 

Table 7.1 Dispatch of active power for SCOPF and various models of RB-SCOPF 

 

Generator 
Dispatch of active power (MW) 

SCOPF HSM ESM HEM 

G1 65.28 66.32 39.17 26.67 

G2 0.53 1.08 26.67 37.19 

G3 40.00 38.30 38.21 37.91 

G4 32.47 32.55 35.07 41.04 

G5 10.67 10.67 11.04 12.16 

G6 42.70 42.72 41.48 36.67 

 

7.3.2 Voltage instability results 

For the IEEE 30-bus system with 36 post-contingency states, we compute the reactive 

margin using the Q-V curve procedure described above. We do the tests and compare the 

results in two aspects. First, we compare the Q-V curves for SCOPF, HSM, ESM and HEM 

without considering contingencies. At a selected bus, we change the voltage and see how the 

reactive power of the SC changes under each operating mode— this is called horizontal 
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comparison. The selected bus can be PQ bus or PV bus. Then, we select a special bus, and 

see how the Q-V curves change with a transmission line tripping for SCOPF, HSM, ESM 

and HEM. The purpose is to see which operating model has strong ability to sustain a 

contingency— this is called vertical comparison. 

1) Horizontal comparison 

The Q-V curve algorithm is applied on generation bus 2. At base case, the voltages and 

reactive powers for G1~G6 are shown in Table 7.2. Let’s first use G2 as an example to 

demonstrate how to obtain its Q-V curve. Results on other generators are similar. 

 

Table 7.2 Voltage and unit reactive output at bus 2 for SCOPF, HSM, ESM and HEM 

 

  G1 G2 G3 G4 G5 G6 

SCOPF 
V (p.u.) 1.060 1.043 1.071 1.033 1.027 1.023 

Q (MVAR) 28.422 39.382 18.023 26.936 -15.093 5.000 

HSM 
V (p.u.) 1.060 1.043 1.071 1.033 1.027 1.023 

Q (MVAR) 36.678 30.322 18.085 26.005 -14.523 5.754 

SEM 
V (p.u.) 1.060 1.043 1.071 1.033 1.027 1.023 

Q (MVAR) 40.597 26.451 17.942 23.486 -12.445 5.492 

HEM 
V (p.u.) 1.060 1.043 1.071 1.033 1.027 1.023 

Q (MVAR) 40.163 28.589 18.262 24.458 -12.415 2.404 

 

    Using the method in section 7.1, we plot the corresponding Q-V curve of bus 2, as shown 

in Fig. 7.4. The voltage changes from 1.25 p.u. to 0.35 p.u..  We observe the changes of the 

reactive power at bus 2.  In Fig. 7.4, the above picture is an overview all the curves. To see 

the details at the “nose point”, we grasp the curves around the nose point area and 

demonstrate the details in the below picture of Fig. 7.4. We can observe that the RB-SCOPF 

dispatch consistently outperforms the SCOPF dispatch in that the RB-SCOPF dispatch 

shows more reactive margin to voltage instability than the SCOPF dispatch does. ESM and 

HEM have higher reactive margins than HSM. This is remarkable since RB-SCOPF 
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dispatch (ESM and HEM) is more economic than the SCOPF dispatch, and ESM and HEM 

are more economy than HSM. The maximum reactive margins of each case are shown in 

Table 7.3. 

 

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
-600

-400

-200

0

200

400

600

800

Voltage (p.u.)

Q
 (

M
V

A
R

)

 

 

SCOPF

HSM

ESM

HEM

0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62
-600

-595

-590

-585

-580

-575

-570

Voltage (p.u.)

Q
 (

M
V

A
R

)

 

 

SCOPF

HSM

ESM

HEM

 

Fig. 7.4 Q-V curves at bus 2 
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Table 7.3 The maximum reactive margins for SCOPF, HSM, ESM and HEM at bus 2 

 

 SCOPF HSM ESM HEM 

Max. reactive 

Margin (MVAR) 
589.9 595.0 597.2 596.9 

 

We also want to demonstrate the Q-V curve on a PQ buses. The bus 4 and bus 12 are 

selected to analyze. According to the test, they have similar characteristics in Q-V curve: 

RB-SCOPF has larger reactive margins than SCOPF, and HEM has larger reactive margin 

than HSM and ESM. Test results on bus 4 are shown in Fig. 7.5 and Table 7.4, and test 

results on bus 12 are shown in Fig. 6 and Table 7.5. To see the details near the “nose point” 

of the Q-V curves, we grasp the Q and V around the bottom point of the curve, as shown in 

the below pictures in Fig. 7.5 and Fig. 7.6. All the evidences demonstrate that RB-SCOPF 

has better performance on voltage instability analysis.  

2) Vertical Comparison 

    In this part we desire to compare how the performances of SCOPF, HSM, ESM and HEM 

system change suffering from a single line outage. Not loss of generality, we did the test on 

bus 4 and see the change of Q-V curves under all the 36 contingencies. Fig. 7.7 shows the 

Q-V curves on bus 4 under normal state and a “N-1” post-contingency state, i.e., the outage 

of transmission line 4-12. It can be seen from Fig. 7.7 that for all the operating modes 

(SCOPF, HSM, ESM and HEM) the reactive margins decrease on bus 4. We are interested 

in which operating mode has the largest reactive margins when the contingency happens. 

The result is shown in Fig. 7.8, which has proved that RB-SCOPF has better performance on 

voltage instability analysis. The interesting point is that the HEM is the most economic 

operation mode, but it has the largest post-contingency reactive margin. 
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Fig. 7.5 Q-V curves at bus 4 

 

Table 7.4 The maximum reactive margins for SCOPF, HSM, ESM and HEM at bus 4 

 

 SCOPF HSM ESM HEM 

Max. reactive 

Margin (MVAR) 
559.47 559.79 560.14 561.35 
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Fig. 7.6 Q-V curves at bus 12 

 

Table 7.5 The maximum reactive margins for SCOPF, HSM, ESM and HEM at bus 12 

 

 SCOPF HSM ESM HEM 

Max. reactive 

Margin (MVAR) 
82.06 82.10 82.24 83.65 
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Fig. 7.7 Compare the Q-V curves between normal state and contingency state for SCOPF, 

HSM ESM and HEM 
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Fig.7. 8 Compare the Q-V curves after a contingency 

 

In Fig. 7.9 we present the reactive margins on bus 4 for all the 36 contingencies. The x-

axis is the contingency numbers, and the y-axis is the reactive margins in MVARs. In order 

to compare the results between RB-SCOPF and SCOPF, we subtract the value of SCOPF 

from the value of RB-SCOPF. For example, the top line in Fig. 7.9 indicates the reactive 

margins of HEM minus the reactive margins of SCOPF at bus 4 for all the contingencies. 

The higher the curve is, the more secure the system is. It is interesting to see that HSM, 

ESM and HEM have higher reactive margins than SCOPF under all the contingencies. 

Especially, the HEM is the model with lowest cost yet with the largest post-contingency 

reactive margins on bus 4. 

An important reason for why RB-SCOPF has lager reactive margin than SCOPF is that 

the former aims at constraining highly-load lines on the system thus the power flows are 
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more uniformly loaded when compared to the latter. This leads to lower reactive losses on 

the circuit, thus results in higher reactive margin to voltage instability. Test results shown in 

Table 7.6 confirm the conclusion. For the dispatch result in Table 7.1, the full AC power 

flow is applied to the system to calculate the reactive loss. From Table 7.6, the SCOPF has 

the largest reactive power loss; HSM, ESM and HEM have lower losses than SCOPF, and 

their losses decrease in sequence. 
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Fig. 7.9 RB-SCOPF reactive margins compared to SCOPF for all the contingencies at bus 4 

 

 

Table 7.6 Compare the system reactive power loss 

 

 SCOPF HSM ESM HEM 

System Q Loss (MVAR) 13.34 12.20 11.41 11.36 
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7.4    Conclusion 

    This chapter presents the testing results of voltage stability performance of risk-based 

security-constrained OPF. The analysis is based on QV curves, which are calculated for a 

particular bus of interest. We did tests on the IEEE 30-bus system. At first, dispatch 

solutions on SCOPF, HSM, ESM and HEM are obtained, respectively. Then, we select a 

single bus and plot the Q-V curves on it based on the different dispatch solutions. At last, 

we compare the post-contingency Q-V curves on a selected bus. The testing results show 

that RB-SCOPF has higher reactive margins than SCOPF at both normal state and post-

contingency states. 

Future research may include analyzing the sensitivity of the reactive margin to the active 

power output of each unit. This will help understand how the RB-SCOPF causes higher 

reactive margin than SCOPF. 
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CHAPTER 8. SUMMARY OF CONTRIBUTIONS AND FUTURE WORKS 

 

8.1    Summary of Contributions 

A new philosophy of power system security control has been proposed in this research. 

Risk, an index to measure the system healthy level, is applied to control the system security. 

Under the risk framework, the traditional deterministic SCOPF model is evolved into the 

Risk-based SCOPF (RB-SCOPF) model. Similar to SCOPF, the RB-SCOPF has been 

formulated into two modes: preventive and corrective, referred to as PRB-SCOPF and CRB-

SCOPF, respectively. This dissertation illustrates the mathematical fundamentals and 

computational strategies for both PRB-SCOPF and CRB-SCOPF, and explores the 

application of PRB-SCOPF in the industry. The major contributions of this work are 

summarized as below. 

1. New approach to handle the piece-wise linearly severity function.  The severity 

function is piece-wise linear, i.e., its formulation changes with the circuit flow in 

different intervals, thus it is difficult to handle the severity function during the 

optimization process. Traditional method to deal with such kind of problems is by 

introducing integer variables to indicate which interval the severity function is 

located. This approach is feasible in theory, but is not applicable in reality because 

the number of circuits and contingency sets is huge in real-world power system. Take 

the ISO-NE system as an example, millions of integer variables should be introduced 

if we use the approach. This will cause prohibitive computation time. In this work, a 

new approach is proposed by transferring the deterministic expression into an 

optimization problem, which avoids introduction of integer variables. We only need 
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to solve linear programming (LP) problem by using this new approach. This greatly 

increases the computational efficiency of RB-SCOPF. 

2. Efficient Computational strategy to solve PRB-SCOPF. The PRB-SCOPF 

improves the traditional P-SCOPF in the following two ways: 1) It introduces a risk 

constraint to control the system’s overall risk level at post-contingency states; 2) It 

enables the system operators control over a tradeoff between the system’s security 

and economy by adjusting the post-contingency overload rating and the overall risk 

level. The PRB-SCOPF is difficult to solve because the risk constraint linking every 

post-contingency state, thus make the size of the programming problem be very large. 

We have proposed a two-layer nested Benders decomposition approach to solve the 

PRB-SCOPF. In the first layer, it is similar to solving the SCOPF problem, thus the 

current framework to solve SCOPF could be used. In the second layer, the problem 

has some interesting features that we can solve the LP problem algebraically, which 

has great improved the computation efficiency. Illustration on ISO-NE system 

illustrates the feasibility of the proposed approach. 

3. Efficient Computational strategy for solving CRB-SCOPF. The difference 

between CRB-SCOPF and PRB-SCOPF is that the former allows for post-

contingency corrective controls. From the view of mathematics, if Benders 

decomposition is applied, the CRB-SCOPF is more difficult to solve because we need 

to solve an individual LP problem for each-contingency state, while in PRB-SCOPF 

we could solve the LPs algebraically. In real power systems, the contingency set is 

usually very large, thus the computational burden of CRB-SCOPF is high. In this 

work, an efficient decomposition based algorithm is proposed to solve CRB-SCOPF 
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by using Lagrangian relaxation and Benders decomposition.  The test results based on 

the IEEE 30-bus system and the ISO-NE system have demonstrated the feasibility of 

the proposed approach. 

4. Realization of PRB-SCED in ISO New England bulk system. The final purpose of 

this work is to realize the PRB-SCED in the industry (to realize CRB-SCED is a 

future work). As illustrated above, the PRB-SCED is an improvement of current 

widely-used SCED, and we can utilize the current SCED framework in the 

computing procedure. The online RB-SCED software has been developed and 

realized for the ISO-NE system. The software utilizes Java for the computing, 

GAMS (the General Algebraic Modeling System) for the optimization, and TARA 

(Transmission Adequacy & Reliability Assessment, software developed by 

PowerGEM Inn.) for the contingency screening. One important function of TARA is 

to obtain the shift factors by simultaneous feasibility test (SFT). The test result 

demonstrates that the RB-SCED can be realized in today’s ISO-based power systems. 

5. Research on the coordination of risk and “N-1” criteria. A visualization diagram, 

called KR-KC coordination diagram, is proposed for decision-support that enables 

efficient security-economy tradeoff analysis. An efficient algorithm is applied to find 

“breakpoints” in the KR-KC coordination diagram. The work helps to demonstrate 

how system risk and post-contingency overload levels on individual circuits are 

coordinated to enhance both economy and security of a power system in real-time 

operations and to identify types of conditions for which high-security and high-

economy modes would be best suited. Use of RB-SCOPF results in improved long-
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term power system performance, for both economics and security. This work 

provides additional insight on its use to facilitate its eventual adoption by industry. 

6. Research on Risk-based LMP and congestion management. Traditionally, the 

LMP is derived from security-constrained economic dispatch model. The LMP 

formulation can be decomposed into three components: marginal energy price, 

marginal loss price, and marginal congestion price. In our RB-SCED model, a risk 

index has been developed for the purpose of quantifying/controlling the system’s 

overall risk level. The locational marginal pricing derived from RB-SCED should 

contain an additional component, called marginal risk price, and the traditional LMP 

is extended to risk-based LMP (RLMP). The risk component is a price signal to 

reflect the system’s overall security level. We have examined the features of RLMP 

and compared it with traditional LMPs. 

7. Research on Voltage Instability Analysis of Risk-based SCOPF. We compare the 

voltage stability performance of operating conditions obtained from RB-SCOPF and 

SCOPF, respectively, using a steady-state voltage instability index. The Q-V curves 

on a select bus are compared for RB-SCOPF and SCOPF based on the IEEE 30-bus 

test system. We also compare the post-contingency reactive power margins. The 

testing result shows that RB-SCOPF has better performance on voltage stability on 

both normal and post-contingency states. 

 

8.2    Future works 

Further develop new security assessment tools, focused on the risk-based security-

constrained optimal power flow, illustrate its effectiveness in enhancing system security 
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levels, and explore the applicability for of RBOPF under the market environment. The 

following topics may be of interest. 

 

8.2.1 Effects of Risk-based LMPs on congested lines causing high LMPs 

Traditionally, LMPs are calculated based on the security constrained economic dispatch 

(SCED) in day-ahead and real-time electricity markets. The LMP calculated from SCED is 

composed of three components: marginal energy price, marginal loss price and marginal 

congestion price. Use of the RB-SCED in electricity markets will result in LMPs that 

include these three components and one more associated with the system risk constraint. 

This risk component is a price signal to reflect the system’s overall security level. It is 

expected that by properly choosing KR and KC values, high LMPs caused by highly 

congested lines will decrease. The RB-SCED model imposes control in proportion to the 

amount of post-contingency flows on lines that need to have flow reduction; this is unlike 

SCED which imposes control to satisfy each line’s post-contingency flow constraint. This 

unique feature of RB-SCED tends to decrease system losses and further decrease LMPs. We 

will study the effects of RB-SCED on LMPs, particularly for congested cases. Some issues 

of particular interest include: 1) Does RB-LMP stabilize price volatility for small increase in 

risk? 2) Given its economic benefits, we will explore the effects on dynamic security 

associated with the RB-SCED solutions.  

 

8.2.2 Extension of the risk concept 

Risk assessment (RA) has been widely used in other industries such as nuclear, 

aerospace, oil, food, public health, information technology and finance engineering. It is an 
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emerging new topic in power engineering. The successful application of RA in other areas 

has provided valuable experience for the implementation of risk-based approach in power 

systems. Thus, we may extend our risk concept in the following ways: 1) Take a 

consideration of today’s mature risk management measures such as CVAR and chance-

constrained programming. 2) Enforce several risk indices in the dispatch problem, in which 

each risk index describes one aspect of operational risk. For example, we could use LOLE 

as a risk index to measure the generation system adequacy. 3) Compare the benefits of 

various risk measurements. 

 

8.2.3 Security assessment of risk-based approach 

We would like to see an improvement of the system’s security level if we transfer from 

deterministic SCED to RBSCED approach. The security assessment study, on both static 

security and dynamic security, should be enforced to compare the performance of the two 

different dispatch tools. The assessment results are useful for our decision on adopting the 

risk-based approach. Suggested measurement metrics are: 1) Static security: overload, 

cascading overload, low voltage and voltage collapse. 2) Dynamic security: perform 

dynamic security assessment on the system. 3) Demonstrate that RBOPF will decrease the 

system losses, because it inherently makes the distribution of power flow more evenly on 

the system. 4) Test on the previously defined indices such as ASI (Angular Separation 

Index) and CEI (Cascading Expectation Index). 
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8.2.4 Uncertainties of power system 

    The power system is facing new challenge as the supply and demand uncertainty 

increases significantly due to the integration of renewable energy resources and price 

responsive demand. The risk-based dispatch approach should consider these uncertainties. 

Suggested uncertainty sources may come from: 1) Loss of a generation resources. 2) 

Uncertainty on load forecasting, especially when wind is high. 3) Uncertainty on demand 

response. 
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